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ABSTRACT strained resources place demanding challenges on software

Object reacquisition or reidentification is the process of match- developers and system designers.
ing objects between images taken from separate cameras. In In this work we present a novel algorithm for object reac-

this paper, we present our work on feature based object rei- quisition in smart camera networks. The major contributions

dentification performed on autonomous embedded smart cam- are the very efficient description of objects using local fea-

eras and applied to traffic scenarios. We present a novel ap- tures, and the subsequent communication and matching algo-
rithm proposed. First objects are identified and described byproach based on PCA-SIFT features and a vocabulary tree. p p ybuilinguniueojec sinatues romvisul fatues, robust local features. The object description is subsequentlyBy building uniqu converted into an extremely compact representation by us-reidentification can be done efficiently coevally minimizing

the commuication verhead btween searate camra nodes ing a vocabulary tree, the so called signature. This signa-
pedtom lrg-caletrhaf scenas,porant pameters ture might further be communicated to the neighboring cam-Applued to large-scale traffic scenarios,iityst density, era nodes. The objects are again described and a specific sig-

ancludinptrtavldnmic ori destinvar tiondemand cnb o nature for the object is created. The matching algorithm com-
tamned, pares object signatures and allows for efficient reacquisition

The proposed approach works on spatially separated, un- and tracking of the objects through entire camera networks.

calibrated, non-overlapping cameras, is highly scalable and One nice feature of our approach is that our algorithms
solely based on appearance-based optical features. The entire minimize the amount of information per object to be trans-
system is implemented and evaluated with regard to a typical mitted between adjacent camera nodes while another one is
embedded smart camera platform featuring one single Texas that it has not to be re-trained for every single camera view.
Instruments TM fixed-point DSP. Additionally, one major goal of our work was to use uncali-

IeTeRecogni- brated setups since multi-camera calibration is still a tedious
Index Terms- Smart Camera Network, Object task. Finally, an important property of our system is that it is

tion,Reacquisition,Vehicles, Vocabulary Treimplemented with regard to a development board featuring a
Texas InstrumentsTmDSP, and that it runs fully autonomous

1. INTRODUCTION coevally fulfilling real-time demands. The power of our ap-
proach is shown on the simulation of several traffic scenarios;

In recent years, the development of algorithms for smart cam- first, a two-camera setup is considered and then a medium-
eras has attracted immense attention in the Computer Vision scale camera network is simulated. The results presented
community. This mainly resulted from the industrial interest proof our concept useful and motivate further research in the
in embedded systems in general and from the advantages of area of local features for object fingerprinting on embedded
decentralized approaches over centralized image processing systems.
techniques. Nevertheless, the deployment of entire smart sen- The paper is organized as follows. In section 2 we give an
sor networks and the implementation of algorithms for dis- overview about applications and algorithms from the area of
tributed computing yield many new problems. While energy smart cameras. In section 4 we present our network topology
efficiency and robustness to environmental stress are impor- specifications and our general framework design. A detailed
tant factors for hardware design on the one hand, on the other description of the algorithms involved follows in section 3.
hand the software developed for such systems has to be imple- Experimental results on two camera network setups are pre-
mented for local autonomous processing and decision mak- sented in section 5. Section 6 concludes the paper and gives
ing. These requirements and more restrictions given by con- an outlook on future work.
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2. RELATED WORK Most former mentioned work is based on global appear-
ance based methods while recent works have successfully demon-

In this section, we review some of the approaches for object strated that local appearance approaches achieve high recog-
reacquisition proposed in the past. We emphasize that most nition results [10, 11]. However, due to the high computa-
of the algorithms in this field come from the area of computer tional effort and low image quality until now the use of local-
vision and do not take any embedded system related issues features for object reidentification has been mostly avoided, a
into account. Thus, in contrast to the work presented here, forteriori for resource constrained embedded systems.
communication constraints or computational issues are usu- Our proposed system differs from the former mentioned
ally hardly considered since all necessary computations are in (i) that the entire system is designed and implemented in
performed on a centralized engine. Additionally, most algo- order to run on resource constrained embedded systems, (ii)
rithms are designed for aerial imagery, thus capturing larger we successfully and solely employ local features (PCA-Sift)
areas but, on the other hand, due to their lower resolutions are for object reidentification and (iii) concentrate our work on
not able to benefit from the usage of local features. minimizing communication costs rather than local process-

In literature, many work concentrates on object instance ing (iv) we avoid the necessity of tedious learning and (v)
recognition and fingerprinting, mostly for vehicles. For exam- our approach works on spatially separated, uncalibrated, non-
ple, Guo et al. [1, 2] address the problem of matching vehicles overlapping cameras (vi), and finally, no global optimization
across multiple sightings. They extract multiple features, e.g. has to be performed.
line segments, of poor quality aerial images and hold these
features in an integrated matching framework.

In one of most recent works Ali et al. [3] use both motion 3. OBJECT FINGERPRINTING AND
and appearance contexts for tracking of vehicles in aerial im- REACQUISITION
ages. In contrast to Guo et al. they use a clustering scheme
based on the Lyapunov Characteristic Exponent (LCE) to learn As former mentioned, the entire object fingerprinting and re-
the motion context of multiple trajectories. Additionally, they identification approach presented in this paper is solely based
use the motion of a car to interpret the behavior of neighbored on local appearance features. Although the usage of local fea-
cars. By using appearance information they are, furthermore, tures has some shortcomings, i.e. computational costs, mini-
able to handle occlusions. mum requirements on image quality, etc., and highly relies on

Coifman et al. [4] tackle the problem of single loop vehi- robust matching methods, it has the advantage of being par-
cle reidentification in order to reliably deviate the traffic flow tially robust to image scale, rotation, affine distortion, addi-

as well as travel time data. Oh et al. [5] use a Bayesian ap- tion of noise and illumination changes. By using a setup such
proach to identify vehicles in freeway traffic. The probability as the proposed one, it is not necessary to tediously train clas-
of identity is derived from physical observations and events, sifiers for each camera or add information of additional cues

i.e. trajectories of vehicles, and can be improved online. Ad- or sensors. In the following, we shortly introduce our choice
ditionally, they are able to derive appearance probabilities for of local features, describe their organization in a hierarchical
each object. tree-like structure and describe the matching algorithm.

Huang and Russel [6] use a probabilistic approach to rei-
dentify vehicles on a traffic highway. Color appearance and 3.1. Local Features
transition times are modeled using Gaussian distributions. Ket-
tnaker and Zabith [7] use a Bayesian formalization to track In our approach we use David Lowe's famous Difference of
persons over multiple non-overlapping cameras. Yet, their Gaussian (DoG) detector to obtain rather accurate keypoints
system has to be calibrated and the number of possible ob- with high repeatability [10] as they have proven to achieve
jects has to be known. excellent repeatability and recall performance [12].

Shan et al. in [8] present a system capable of reidentify- In short, the DoG-detector takes the differences of Gaus-
ing cars between two non-overlapping cameras formulated as sian blurred images as an approximation of the scale normal-
same-different classification problem without direct feature ized Laplacian and uses the local maxima of the responses in
matching. Their system, however, builds on a SVM classifier scale space as an indicator for a keypoint. The DoG-detector
which has to be trained and uses edge-based object match- mainly delivers keypoints which indicate the presence of blob-
ing which does not achieve comparable discrimination rates like (more less circular) structures in images.
compared to, e.g, DoG or MSER based approaches. A nice feature of the DoG detector is that it is almost

Sun et al. [9] perform vehicle reidentification using a mul- purely based on image filtering and addition/subtraction oper-
tidetector fusion approach. While detection is performed us- ations. While a clever arrangement of filtering and search op-
ing a nearest neighbor classifier and a linear fusion strategy erations makes the algorithm also efficient in terms of mem-
the features are based on object color and inductive loop in- ory usage, the algorithm is very well suited for DSP plat-
formation. forms, as they are mainly designed for fast filter operations.
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Moreover, the filtering can be implemented in fixed-point which
results in a significant performance increase.

Because the algorithm delivers keypoints with a given scale Level (D
factor, for the calculation of a descriptor a circular region
around the keypoint is cropped, whose size is dependent on eve

the keypoint scale and its orientation depends on the major
gradient orientation around the keypoint. Ke and Sukthankar-
[13] proposed to extract a compact representation, the so called
PCA-SIFT descriptor. They have calculated a PCA eigenspace ..======= D
on the gradient images of a representative number of over
20000 image patches. The descriptor of a given patch is gen- XD
erated by projecting the gradients of the tile onto the precal-
culated eigenspace keeping only the d most significant eigen- \ (D, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .........,,,,\vectors. KX

This descriptor has several advantages, especially for our -D
utilization. First, the descriptor is very compact, because Ke \ /
and Sukthankar have proven the d 36 dimensional descrip- /
tor to exhibit the same discriminatory power as the original
128-dimensional SIFT descriptor of Lowe. A second big ad-

Fig. 1. Schematical illustration of hierarchical k-means clus-vantage is, that a further decrement of d results in only a slight
t

loss in discriminatory power, thereby making the descriptor ntering. Here clustering is performed for k 3 and levels 1 to
caclto itel scalable. 4, until all points in feature space remain as individual leaves.calculation itself scalable.

3.2. Building the Vocabulary Tree multiple leaves at the end of branches into single nodes. This
can be done either by removing leaves which are too close

Recently encouraging recognition results have been achieved together or by simply cutting off branches from a predefined
in the area of large-scale image databases, using tree-like rep- level. Needless to say that pruning is equivalent to making a
resentations of local descriptors [14, 15]. One approach is the dense sampling in feature space a little sparser. The vocab-
usage of vocabulary trees and inverse voting, like the work of ulary tree has to be built only once and is universally used
Nister and Stewenius [15]. For our framework we also uti- throughout agiven camera network.
lize the advantages of this basic principle to efficiently build
a compact object fingerprint.

First we extract a large number m PCA-SIFT descriptors 3.3. Object Signature and Signature Matching
from training images containing instances of the object cat-
egory to be dealt with. It is essential that the object domain Whether leaves were collapsed or not, the tree contains a fixed
is well covered by the sample images to guarantee for good number I leaves which are numbered in increasing order and
performance. In other words, the descriptors extracted from (hopefully) populate the feature space as desired. For generat-
training images should nicely populate the d-dimensional fea- ing an object signature, the keypoints are detected on the ob-
ture space to best possibly fit to the features extracted during ject image and corresponding descriptors are calculated. For
testing. The large set of descriptors is quantized in a repeated each of the t descriptors extracted, the nearest neighbor in
k-means clustering with a fixed k down the levels of the hier- feature space is determined by traversing the vocabulary tree
archical tree. At every node the set of descriptor vectors clus- from the root downwards to the leaves. The unique IDs of the
tered by k-means is partitioned in k nodes and propagated to corresponding leaves representing the nearest neighbors are
the next level until no further splitting is possible. The num- increasingly sorted to form the final object signature (which
ber of visual words which can be represented is kL, where k is in fact a vector of length t numbers). This vector is a max-
is the branch factor and L is the deepest level of the tree. Fi- imally compact representation given a fixed vocabulary tree
nally, the output of the repeated clustering is our vocabulary (see figure 2 for illustration).
tree containing m leaves. The clustering and tree building For matching of individual object signatures, the number
process is illustrated in figure 1. of identical elements has to be determined. Though the ob-

The amount of data for storing and maintaining the tree is ject signatures are relatively short vectors (typically in the
mainly dependent on the descriptor dimension d, the branch- order of a few hundred elements) and can be matched very
ing factor k and the number of descriptors m used for training, fast, sorting of the elements in increasing order still simplifies
While a small descriptor dimension d is always preferable, the the algorithm complexity and makes more efficient matching
overall size of the tree can be massively reduced by collapsing possible.
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Fig. 2. Illustration of the object signature generation mechanism. After detection of keypoints and descriptor calculation, the
leaves representing the nearest neighbors are determined. The unique indices of the leaves are sorted and stored as object
signature.

3.4. Removal of Insufficiently Represented Features [16], hence consisting of a single Texas InstrumentsTM digi-
tal signal processor (TMS320C6414) running at 600MHz and

Although sample images from the object domain are used for 1MB on chip cache as well as 16MB external SDRAM. The
the construction of the vocabulary tree, populating the whole hadrepotyeidsgndobepledsafuyit-
feature space equally well is almost impossible. Especially grtdcmatveosvrwhhcnbeailitgaedn
features from background noise or objects not belonging to exsigaao/iia caeanewrs
the object category often can not be represented well by any
leaf of the tree since they populate different areas of the fea-
ture space. We can leverage this to early discard features from 4.2. Camera Network Setup
being included into an object signature. If the Euclidean dis-
tance between a feature and its nearest leaf is above a given In order to ensure an easy and scalable setup, our proposed
threshold 0dist we simply treat it as noise and eliminate it. By network architecture is hierarchical organized in camera groups.
doing so we can guarantee that only these features are used A group simply consists of one or more single cameras and
to build a signature which are not likely to change their affil- is defined as a set of neighboring video sensors. Each cam-
iation to a specific leaf when being extracted from different era itself is uniquely identified by its group and camera ID,
object views. respectively. A complete camera network is temporally syn-

chronized using NTP, constituting the only dependency of our

4. CAMERA NETWORK SETUP AND FRAMEWORK system to some kind of local coordinator. Two types of com-
OVERVIEW munication paths are possible, as illustrated in figure 8 show-

ing our multi-camera simulation setup, namely intra-group
In this section, we in short describe our target hardware plat- and inter-group communication. For each camera, the neigh-
form and outline the proposed camera network set up. All boring cameras are defined as internal neighbors if they are
design considerations are driven by the fact that the entire in the same group, or external neighbors if they belong to a
system has to be used in typical outdoor traffic scenarios as different group.
well as under harsh environmental conditions. For each new object passing a camera an object signature

is created and multicasted together with a timestamp, a pre-

4.1. Target Platform liminary empty history, and the camera and group ID to all
neighbors defined. The signature is also stored together with

All experiments and simulations were performed to proof our a predefined timeout in a temporary output buffer for later
framework applicable on a popular hardware setup for smart acknowledgment. All receiving cameras store the incoming
cameras. Our platform is similar to the one used by Arth et al. message in a dedicated buffer. If objects are passing the indi-
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vidual node, a signature is created and compared to all avail-
able signature messages in the buffer. The matching score
is evaluated against a special threshold. If it is lower than
the threshold it is considered as "new" (object having entered
the scenario in between two neighboring camera nodes), and
processing proceeds as described above. If it is higher than
the threshold, the car is reidentified, the old signature is ex-
changed by the new one, the history is updated and the mes-
sage is multicasted to this cameras neighbors again. Further-
more, the camera which had delivered the signature before is
notified that the object has been reidentified.

For overall surveillance purposes two types of notifica-
tions to a supervisor might occur. Either a message is created
if the object in the temporary output buffer was not acknowl-
edged within the given timeout. This means that an object
might has left the scene in between two neighboring cameras.
Another message is created if an object is passing a boundary
camera node having no more neighbors. Anyway, both types |
of messages passed to the supervisor contain the complete
tracking history of the object making statistical flow analysis
on a global level possible.

5. EXPERIMENTS

In this section we evaluate our approach in a real-world traffic
scenario. First we describe the way how we collected images
for our algorithm evaluations. Then we examine our methods
on two different setups and give detailed results. A discussion
of the results and further notes conclude the section. Note that
all calculations have been simulated under MATLABTmand
finally been examined in the context of our hardware plat-
form.

Fig. 3. Projection of various cars onto different backgrounds.
5.1. Data Acquisition and Database Creation We simulate the various levels of background noise by crop-

A well-known problem with the evaluation of algorithms for ping the vehicle out of the images again with a varying border
added around the object.sensor networks is the lack of training and test data, respec-

tively images in our case. Clearly, collecting data from a
multi-node sensor network is difficult due to time synchro-
nization problems. Moreover, the amount of data to be stored
and the lack of automatic video annotation tools complicate
the creation of a useful database. ________

4o CornmUn7dati6n Flow ,We cope with the problem by applying several tricks from C Fo
the area of computer vision to collect a set of pictures with - - - - / - - - -.
two cameras only, which we can still use to test our algorithms
under maximally realistic conditions for an entire camera net-
work.

Precisely, we recorded 171 vehicles with two different
cameras in a roundabout, in order to get maximal viewpoint
changes, and then segmented the objects using a simple back-
ground modeling. Additionally, we took 29 pictures of many Fig. 4. 2-Camera setup. Vehicle signatures are communicated
different urban traffic scenarios. Having this basic data setup, between the cameras.
we projected the segmented objects to the different backgrounds
and varied the ratio between background and foreground ob-
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ject, thus, allowing for arbitrary reidentification simulation 100

under various amounts of background noise and various view- -| ,-
points (see figure 3 for illustration). For simplicity we assume
that in a practical setup a preliminary detection result is avail-
able. In other words, the algorithm is only applied if an object i 70

is present in the image and the major part of an image is cov-.
ered by only this single object in query. Partial occlusions or
parts of other objects are sufficiently well simulatedby back- 50

ground noise.
a

5.2. Two-Camera setup
-+SIFTDes rip ors

first simuatX rPCASIFT DescuporsIn our first experiment we simulate a camera network con- VoaarTree
sisting of two single cameras, as depicted in figure 4. For 10 A I. Te removal
simplicity we assume that vehicles are simply passing the sce- 0 - -

0 1 0 X D 3 40 so 8 7
nario in random order without leaving or entering the scenario Background Noise 1]
in between the cameras. Furthermore, we simulate traffic in
one direction of the road only, so cars are not allowed to turn Fig. 5. Recognition performance for different levels of back-
around. Our simulation runs in a 10000 ticks long time loop ground noise. For example, 50% background noise indicates
and the vehicles pass the first camera in random order and that the object only covers half of the total image area.
random intervals. Each vehicle has 500 ticks at max to pass

the second camera. Thus, the buffer timeout of the cameras is | Method T Data to Recognition
set to 500 ticks. To highlight the benefits of our approach we [ { transmit [kB] Performance
compare it with a reacquisition system based on pure match- SIFT keys 19.060,8 90,64 %
ing of SIFT or PCA-SIFT descriptors. PCA-SIFT keys { 5.360,8 82,11 %

In figure 5 the dependency of the recognition performance Object Signatures (no removal) 148,9 87,60 %
on the additional amount of background noise is depicted. Object Signatures (removal) 49,5 88,18 %
To illustrate the importance of removing inadequately rep- Table 1. The amounts of data to be transmitted between in-
resented features, we have evaluated our approach for both dividual nodes and the recognition performances for our two-
strategies, with and without removal. In the first case the

.. . . . ~~~~~~~~~~camerasetup. We assume that all information iS encoded inrecognition performance significantly drops as the influence
of noise on the signature generation increases. In the lat- integer orfloat units with 4 bytes each.
ter case the recognition performance only slightly decreases.
This indicates that a rough object segmentation together with Figure 7 shows the amount of information contained in a
our removal strategy is sufficient to allow for satisfying per- single transmission unit ([kB]). It is easy to see that our ap-
formance. Note that we have not evaluated our approach for proach nicely compresses the information necessary, while a
noise levels below 30% because using a simple bounding box high amount of data with low information content is transmit-
around the segmented car already includes at least 25% of ted in matching-based approaches.
background clutter.

In table 1 the amount of data together with the recogni- 5.3. Multi-Camera Setup
tion performance achieved for different types of strategies for
fully segmented vehicles (no background noise) is summa- For this experiment the camera network setup is as depicted
rized. While our strategy already reduces the amount of data in figure 8. The conditions for vehicle movements are the
to be sent by a dramatic factor, removing noisy features once same as described in the previous section, but additionally
again cuts the transmission costs by 2/3. As can easily be the paths of the cars through the scenario are determined ran-
seen, our setup achieves satisfying results, coevally minimiz- domly. For ease of illustration we allowed all cars in either
ing the amount of data to be transmitted between individual case solely to enter the scenario from one group. However,
camera nodes. note that we achieved similar performance rates with arbitrary

In figure 6 the amount of data to be transmitted for vari- entry groups.
ous levels of background noise is depicted. While the trans- In figure 9 we have depicted the traffic flows for our setup
mission costs for our tree-based approach only slightly in- based on a random traffic setup and with four different entry
crease, the transmission costs for matching-based approaches groups. Though recognition rates in each case depend on the
explodes as there is no mechanism to early discard bad fea- entering group, for all four starting conditions our framework
tures. achieved at least 87% of successful vehicle tracking through
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Fig. 6. Transmission Costs for different levels of background Fig. 7. Information Content for different levels of background
noise. As the difference in the amount of data is that severe, noise. While the amount of information contained in a single
logarithmic scaling is chosen. transmission unit ([kB]) is low in matching-based approaches,

it is high in our tree-based approach. Note that our vocabu-
lary tree based method performs more than two powers of ten

the entire scenario. Note that, although compared to the two- better than the original approach based on PCA-SIFT or SIFT
camera setup one might expect a significant worse recognition feature matching.
rate, the relative high performance comes also from the fact
that due to the higher amount of cameras, each camera has to
handle a smaller signature message buffer. ing is that our algorithm uses relatively low image resolution

and grayscale images, thus it is not possible to distinguish two
5.4. Discussion and Notes similar cars, like cabs, as long as they have no remarkable

unique feature, like stickers or paintwork damages. Lastly,
In the previous experiments, we showed that the use of a to hit performance limits for series-production readiness in-
vocabulary tree is advantageous for this type of application. corporating license plate information is essential anyway and
However, for deployment on our hardware some additional was not taken into account yet.
preconditions have to be met.

First we have to make sure that our implementation of 6. CONCLUSION AND FUTURE WORK
the DoG detector and the PCA-SIFT descriptor is real-time
capable. Currently, our implementation achieves a little less In this paper we presented a novel approach for object reac-
than 4 frames/second on 352x288 pixel images, the time taken quisition and reidentification in networks of embedded smart
for calculation of keypoints and descriptors is about 270Oms. cameras. The proposed algorithms are designed to run fully
The time for calculation of a signature using the tree is around autonomous on an embedded development platform and are
5,ms. This means that about 3 object detections per second real-time capable. While communication overhead between
can be processed, which is equivalent to a traffic flow of about adjacent camera nodes is notably reduced, we proof the appli-
10000 cars/hour. Note that we have not fully optimized our cation of high-level local features advantageous for object fin-
implementation, so there is still room for improvement. gerprinting. While the application of the approach proposed

An important issue is the amount of memory needed to is not limited to a special object category, our algorithms were
store a k-means-tree on an embedded device. About 5.1 MB tested on traffic scenarios and encouraging results were pre-
are needed to store a tree with about 43.000 leaves as we used sented.
it in our first experiment. The amount of memory to store the In the future we will concentrate our work on the opti-
temporary buffers is negligible. mization of our algorithms for special types of objects. One

Although we have a fully-embedded and working imple- of our intentions is to incorporate color information, as color

Te:mai reso is tha ou frmwr is misin soemr bet doan, e.. vhce. Futemr welo,owr
imotn faue, suc as........th incorporation,,of,color infor- to als intrduc new viua faueanotrtysofim-

mto. Adiioa fetue are inipnal to copnst pl clsiir int ou frmwr to bette fi to th demands
forosdetag viwon chngs Ante shrcm difcl obec caeore mae e.g pdsrians.
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