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Outline

Localization of robot using an omni- directional camera by 
geometric matching and 1-D projective invariant matching 
(Marhic et. al. 1998).

Localization of robot with a single camera using 2-D 
planar projective invariants (Roh et. al. 1997)

Temporal calibration of video sequences from 
unsynchronized cameras using 2-D projective invariants 
(Velipasalar 2005).

Landmark based navigation of a robot using projective 
invariants (Tsonis et. al. 1998).



Possible Methodologies for localization

Active beacons
Ultrasonic ranging sensor

Little processing but large uncertainty on real target point. Therefore, 
needs a corrective method.

Laser sensors
Produce narrow range, more accurate.

Vision based methods
Stereoscopic – multiple cameras to capture panoramic scene.
Catadioptric – single camera with a conic or parabolic reflector.

Proprioceptive sensors
Dead-reckoning.



Omni-directional sensor (Marhic et. al. 1998)

Catadioptric imaging
Conic reflector vertically oriented
Single static camera

Conic reflector

Camera



Omni-directional sensor (Marhic et. al. 1998)

Vertical lines are usually the 
most distinctive or 
contrasted feature both 
indoors and outdoors.

Vertical lines are projected 
as radial lines passing 
through the apex of conic 
reflector



Processing

Extracting radius lines (Feature detection)
Deepen parts of the scene representing radius lines 
Find characteristic parameters for line detection.

Matching of surrounding recorded marks and 
observed scene (Feature matching)



Detecting radial lines

Possible approaches: 
Hough transform (finding pixels belonging to same line).
Group pixels in areas, compute grey level gradients for 
every pixel, group directional gradients, find connected 
components.
Attractive areas research: 

Find grey levels on concentric circles with the apex of cone as the 
centre.
Use Sobel operator to get contrast on the circles.
Identify high gradient points (crossing pts for radius lines).
Group points belonging to the same lines



Localization

Relating real and observed world
Need to find the three attitude parameters 

of the robot.
Atleast three radius lines are necessary to 
solve the set of relations

Numerical methods may be employed to 
solve the equations above.

Matching
For each set of three radius lines, find the 
solution and see which solution matches 
most other  beacons.
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Using projective invariant: 1-D cross ratio

Method outlined above suffers from parasite straight lines.
Cross ratio may be employed to resolve the matching 
between the model and omni-directional image.

Matching with cross-ratio does not require calibration.



1-D Cross-ratio

Cross-ratio is the most fundamental projective invariant 
and all other projective invariants can be derived from it.
Definition: For any four collinear points  P1,…,P4 the 
cross-ratio is defined as

where Dij is the distance between Pi and Pj
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Cross-ratio

Theorem: The cross-ratio of distances between any four points in 
the object line is the same as the cross-ratio of distances between 
their images in any image line,

where        is the distance 
between       and      .
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Dual of cross-ratio

Since points and lines are dual 
(dual relation to collinearity 
being coincident),  cross ratio 
for a pencil of four lines is 
defined as

where        is the angle 
subtended at the point of 
incidence by the line segment                                   
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Cross-ratio by radial lines

Line L′ is the projective 
image of the line L.
The coordinates of points 
on L and L ′ can be 
related by a 2x2 matrix T, 
x ′ = Tx.
The matrix T has three 
essential parameters since 
the scale is not important.

Theorem: Any homography preserves cross-ratio.



Numeration problem

Cross-ratio depends on the order in which points are 
marked.
Out of 24 possible permutations of four points, only 6 give 
different values for cross-ratios,

Symmetric functions that are invariant to permutations 
may be used to combine the six cross-ratios, for instance 

A preferred permutation invariant is
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Plane projective invariants (Roh et. Al. 1997)

Definition: Given five points             on the projective 
plane, no three of which are collinear, two independent 
projective invariants are defined as

where               denotes the determinant of 
the matrix           whose columns are the homogenous 
coordinates of the points          and .

521431

531421
2

521432

532421
1 ,

MM

MM
I

MM

MM
I ==

{ } { }5,...,1,,, ∈cbaM abc

5,...,1 pp

abcM
ba pp , cp



Localization and obstacle detection (Roh 97)

A method using cross-ratio and plane projective invariants 
is given in Roh et. al. for localization and obstacle 
detection while navigating in corridors and similar indoor 
environments. 
Its assumed that robot’s environment has flat ground plane 
and two sidelines are formed by floor and two sidewalls.
The environmental map database is assumed to be 
available for matching between model and the scene.
Intersection points between floor and the vertical lines of 
door frames are used as point features to compute cross-
ratios.



Localization and obstacle detection (Roh 97)

A database of pre-computed cross ratios of point 
features is constructed and used for finding 
correspondence between model and the scene.
The locations of obstacles inside the risk zone are also 
computed the same way.
If and represent the coordinates of points 
on the image plane and the corresponding points in the 
object plane respectively, then
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Localization and obstacle detection (Roh 97)

The two equations above can be solved uniquely 
for localization: In order to find the relative 
position of an object point with respect to 
known four points and

, (having found the image coordinates of 
the five points), the following system of equations 
can be solved,

where A, B, C, D, E and F can be expressed in 
terms of the invariants I1 and I2 and known 
coordinates.
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Localization and obstacle detection (Roh 97)

If the fifth point corresponds to the 
robot center, we get the 
localization. If it corresponds to an 
unexpected object on the risk zone, 
we get obstacle detection.



Temporal calibration of multiple video 
sequences (Velipasalar et. al. 2005)

Multi-camera systems receive increasing interest these days 
since single camera provides only a limited field of view and 
several applications (like surveillance) require larger 
coverage areas and longer tracking times. Another problem 
with single camera is that of occlusion.
Temporal calibration identifies corresponding frames in 
video sequences captured by different cameras and is very 
important for multi-camera systems.
Calibration using a synchronous master clock is expensive.
Velipasalar et. al. present an image processing based method 
for temporal calibration from unsynchronized cameras.



Overview of the algorithm (Velipasalar 2005)

Track each foreground object, extracting its location in the 
current sequence and finding the corresponding location in 
the other sequence using projective invariants.
Find matching tracks in the video sequences and recovering 
an initial frame offset value for the match.
Perform a confidence check for each matched track pair by 
using the recovered offset to find the most reliable matching 
track pair and candidate offset.
Assumptions: 

the cameras are static and  have the same frame rate; 
objects move on a planar surface and bottom parts of objects are
visible, although briefly.



Operation scenario (Velipasalar 2005)

denotes the label of the ath track in the cth camera view, 
where Nc is the number of tracks.

is the frame number for the ith point in the track      .

The frame offset is where a′ is the track in 
sequence captured by camera 2 corresponding to track a in 
the sequence captured by camera 1.
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Computing corresponding locations 
(Velipasalar 05)

Denote the two cameras by Ci and Cj and a point on the 
ground plane of Cj by pg

(j). The corresponding location pg
(i)

in the view of Ci is computed using projective invariants,

Four pairs of corresponding points in the views of Ci and 
Cj are chosen offline on the ground plane. Then for any 
fifth point in the view of Ci, the corresponding point in the 
view of Cj can be found using the invariants.
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Matching the tracks (Velipasalar 2005)

A track is stored as a sequence

where is the extracted location of the foreground 
object in the current view and                                is the corresponding 
location of               in the other view.
The distance between points of tracks in different cameras

The track matching problem

where Δ is the frame offset.
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Landmark-based navigation using projective 
invariants (Tsonis et. al. 1998)

The 2-D cross-ratio is used to recognize and store landmarks 
during a learning phase.
The stored landmarks are matched to re-discovered landmarks at 
navigation time.
Instead of using pre-designed engineered landmarks or selected 
landmarks like straight-lines, the approach presented in this paper 
addresses the problem in more general and realistic workspaces.
The landmarks derived from the captured images have to satisfy 
some saliency and spatial dispersion.
It is assumed that robot’s environment contains planar surfaces.



Learning phase: Permutation insensitive 2-D 
projective invariant (Tsonis et. al. 1998)

Two-dimensional cross-ratio is  permutation sensitive
Any quintuple gives five different values for the 2-D cross-ratio 
depending on the order.
However, any two of the five different cross-ratios can determine 
the other three.

A permutation sensitive 2-D projective invariant

where

],,,,[,
][][
][][

],,,,[ 54312
521431

531421
54321 PPPPP

PPPPPP
PPPPPP

PPPPP === νμ

)
)1(
)1(()

1
1()()()(),(

−
−

+
−
−

+++=
μν
νμ

μ
ν

ν
μνμνμ JJJJJK

13333
2698962)( 23456

23456

+−+−+−
+−+−+−

=
λλλλλλ
λλλλλλλJ



Learning phase: Visual landmarks (Tsonis 98)

Visual landmarks are defined to be the sets containing sub-landmarks.
Sub-landmarks are quintuples of coplanar points derived by

first using a robust corner detector (the potential landmarks form corner map)
constructing a saliency map comprising of points that form distinct enough 
patterns; using features like area correlation, image entropy in neighborhoods.
choosing points that are close enough but satisfy a spatial dispersion threshold.
checking for co-planarity of points

By identifying corresponding quintuples in consecutive frames using a covariance 
test.
verifying the permutation insensitive projective invariants for quintuples in 
consecutive frames.

Topological map construction:  storing the projective invariant with each 
sub-landmark, along with references to navigational preferences.



Landmark Recognition  (Tsonis 98)

Follows the same procedure for extracting the landmarks as during the 
learning phase.
The projective invariants for quintuples located in the scene are compared 
with stored values to find correspondence.
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