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Strategy: Use Clifford algebra to develop invariants for projective transformations. 
 
(Reference: J. Lasenby, et al., “New Geometric Methods for Computer Vision: an 
application to structure and motion estimation”, 1996) 
 
Idea: Basis-free geometry (since it is basis-free, invariants will naturally arise, therefore 
it should be useful for our purposes.) 
 
Given: 2 vectors, a, b 
  
 a · b  (grade 0) 
 a x b  (grade 1)  (only valid for 3D) 
 
     More generally, introduce 
 
 a /\ b    (a ‘wedge’ b) is a directed area in sweeping from a to b.(see Fig. 1) 
   (a parallelogram)  (this is a bivector) 
     And, 
 
 b /\ a = - a /\ b          (1) 
 
     In general, we have  
 

a1 /\ a2 /\ … /\ am-1 /\ am     (multi-vector)  (a parallelopiped) (grade m) 
 
Define:  
 ab = a · b + a /\ b       (2) 
 
     it follows that: 
 ab = a /\ b    if a, b are orthogonal, and    (3) 
 
 ab = a · b  if a, b are parallel     (4) 
 
 ba = b · a + b /\ a = a · b - a /\ b     (5) 
 
     so then, 
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 a · b = ½ (ab + ba)   (associated inner product)  (6) 
 
 a /\ b = ½ (ab - ba)   (associated outer product)  (7) 
 
Definition: 
 A geometric algebra has a product satisfying: 
    (ab)c = a(bc)  aλ = λa ,  for scalar λ 
    a(b + c) = ab + ac  a2 = |a|2 
    (b + c)a = ba + ca 
 
 and the associated inner and outer product are defined by (6) and (7). 
 
If { σ1, … , σn} is any orthonormal basis for nℜ , we get a basis for the algebra: 
 
 {1, {σi}, { σi /\ σj | i ≠ j}, { σi /\ σj /\ σk | #{i, j, k} = 3}, etc.} 
 
     which will have 2n elements. The highest grade element is σi /\ … /\ σn . 
 
Example:  n = 3   The basis will have 2n = 23 = 8 elements: 
 
 {1, σ1, σ2, σ3, σ1σ2, σ2σ3, σ1σ3, σ1σ2σ3} 
 
 (Note: σ1 · σ2 = 0 since the basis is orthonormal, hence σ1σ2 = σ1 /\ σ2 .) 
 (Also, since the basis is orthonormal, σi

2 = | σi |
2 = 1.) 

 (This is  8ℜ  with a strange multiplication.) 
 
     It follows that: 
 
 (σ1σ2σ3)

2 = σ1σ2σ3 σ1σ2σ3 = -σ1σ2σ1σ3σ2σ3 = -σ1
2
 σ2 σ2σ3

2 = -σ1
2
 σ2

2
 σ3

2 = -1 
 

Also, one can verify that σ1σ2σ3 commutes with every element of the algebra (will    
   be true for n odd). 

     Call σ1σ2σ3 = i      (i.e., 1− ) 
 
     It follows that: 
 
 i σ3 = σ1σ2 , i σ1 = σ2σ3 , i σ2 = σ3σ1       (8) 
 
     These bivectors rotate vectors in their own plane by 90°. 
 
     Note: set I = i σ1 , J = - i σ2 , K = i σ3 , then we get: 
 I2 = J2 = K2 = IJK = -1  (Hamilton’s quaternions). 
 
     The algebra with basis 1, I, J, K is 4ℜ  with a strange multiplication, i.e., a sub-algebra  
        of our geometric algebra. 
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General Rotations: 
 
First, study reflections. (easier) (Any rotation is the product of two reflections.) 
 
     Consider a vector, a reflected in the plane orthogonal to the unit vector n, to get a′ (see 
Fig. 2). 
 
     Then, we can breakup a into components,  
 
 ||aaa += ⊥ ,          (9) 

 
the components perpendicular and parallel to n, and then, 
 
 ||aaa −=′ ⊥ .         (10) 

 
     Since n is a unit vector, then n2 = |n|2 = 1, and  
 
 a = n2a = n(n · a + n /\ a) = (n · a)n + n(n /\ a) , which implies that 
 
 ||aaa −=′ ⊥  = n(n /\ a) - (n · a)n 

           = -(n · a)n - (n /\ a)n 
           = -(n · a + n /\ a)n = -nan .     (11) 
 
     Thus, reflecting in the plane perpendicular to n is the map nana −a  
         (Note: this works in any dimension) 
 
Suppose you reflect in the plane perpendicular to n, and then in the plane perpendicular 
to m. (the product of two reflections) This is a rotation. Then, a maps to  
 
 -m(-nan)m = (mn)a(nm) 

        = RR
~

a ,   where R = mn, nm=R
~

.    (12) 
 
     R is called a rotor (it is also a multivector) (it encapsulates the information about the  

rotation.) 
  
     Notes: 

1) R only has even grade elements (scalar, bivector, etc.) and  
1

~ 2 ==== mmmmnmnnmRR  ,  and 1
~ =RR  ( R

~
 is the multiplicative 

inverse of R) 

2) RR
~

aa a     handles rotations in any dimension. 
3) Can rotate elements of any grade, not just vectors – very general! 
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     Consider the problem of rotating n1 to n2, say by angle θ (see Fig. 3). What is R? 
 

 1212

~
nnnn RRRR =⇒=  

 
        Note that one solution is R = 1 + n2n1 , but we also need 1

~ =RR  , so try  
 R = α(1 + n2n1) , then 
 

 ( )( ) ( )2112
2

2112
2 1111

~
1 nnnnnnnn +++=++== ααRR  

 
 ( ) ( )12

2
12

2 1222 nnnn ⋅+=⋅+= αα  
 

        So, 
( ) 







−=
⋅+

+
= n

nn

nn

2
exp

12

1

12

12 θ
iR  ,      (13) 

 
where n is orthogonal to the plane cut out  by n1 and n2 (the axis of rotation). 
 
 

11/15/07 
 
Example: Camera motion from two scene projections with range data known. (3D-to-3D 
correspondences) 
 
   Assume cameras with optical centers at O1 and O2, with respective Axes {σ1, σ2, σ3} 
and { }321 ,, σσσ ′′′ , where σ3 is orthogonal to α1, the image plane for camera one, and 

similarly for camera two. (See Fig. 4.) Let  
 

 PO1=X , 11MO=x , 21OO=t       (14) 
 
   The frame {σ1, σ2, σ3} is rotated to a frame { }321 ,, σσσ ′′′  at O2, where for R being the 

corresponding rotor, we have 
 

 RRRR iiii σσσσ ′=⇒=′ −1~
       (15) 

   

   Let   PO2=X
(

 
 
   Then, 
 
 tXX −=

(
         (16) 
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 The observables (measurements) in the {σi} and { }iσ ′  frames are: 

 
 iiX σ⋅= X  

 
   and 
 
 iiX σ ′⋅=′ X

(
 

 
Define the vector X′  in the {σi}frame as:  
 
 ( ) ( ) ( )RRRRRXRRRXX iiiiii tXXX −==′′=′′=′=′ −−−− 1111

(
σσσ   (17) 

 
Rearranging: 
 
 tXXXtX +′=⇒′=− −− 11 RRRR       (18) 
 
For simplicity, assume |t| = 1. 
 
Suppose we have n point correspondences in the two views, and the coordinates in the 
views, {Xi} and {Xi’}, (1 ≤ i ≤ n), are known. 
 
We want to recover the camera motion, i.e., find R and t that minimize the sum: 
 

( )[ ]
2

1

1∑
=

− −−′=
n

i
ii RRS tXX        (19) 

 
To find this minimization, we differentiate wrt R and t, then set to zero. First, wrt t: 
 

( )[ ] ( )RRRRS t

n

i
iit ttXX 1

1

12 −

=

− ∂−−′=∂ ∑      (20) 

 
which will be zero when, 
 

 ( )[ ] 0
1

1 =−−′∑
=

−
n

i
ii RR tXX  

 
Solve for t: 
 

[ ] 0
1

11 =+−′∑
=

−−
n

i
ii RnRRR tXX   ⇔   [ ]∑

=

−− ′−=
n

i
ii RR

n
RR

1

11 1
XXt  

 

⇔    [ ] 1

1

11 −

=

− ′−=′−= ∑ RRRR
n

n

i
ii XXXXt      (21) 
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where   
 

∑
=

=
n

i
in 1

1
XX   and   ∑

=
′=′

n

i
in 1

1
XX       (22) 

 
So, the optimal t is the centroids of the points.  
(Note: this is a known result that we have recovered here.) 
(Note: there will be an issue with robustness since one outlier can adversely affect the 
results – a so-called ‘black swan’) 
 
Then, differentiating wrt R, it can be shown that we get: 
 

( )[ ] 0
1

1 =−∧′∑
=

−
n

i
ii RR tXX        (23) 

 
Plug-in the optimal t and we get: 
 

 [ ]∑
=

− =∧
n

i
ii RR

1

1 0uv         (24) 

 
where  XXu −= ii    and   ii Xv ′=  

 
We can find the rotor, R, using the Singular Value Decomposition (SVD) on the matrix 
F, defined in terms of the ui’s and vi’s as: 
 

 ( ) ( )( )i

n

i
if vuF ⋅⋅=⋅≡ ∑

=
βαβααβ σσσσ

1

     (25) 

 
then the SVD gives  F = USVT, and then R = VUT. 
 
 
Paper for next time (Matt): 
 
“A geometric approach for the theory and applications of 3D projective invariants” 
Bayro-Corrochano, Eduardo; Banarer, Vladimir 
Journal of Mathematical Imaging and Vision, v. 16, n. 2, March  2002, pp. 131-154 
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Appendix: 
 

             
Fig. 1 - a /\ b         Fig. 2 – Vector a reflected in the plane orthogonal  

to n. 
 
 

  
 
Fig. 3 – Rotation of n1 to n2. 
 

 
 
Fig. 4 – Object point viewed from two camera positions. 


