Geometric Algebra

Prof. Nigel Boston
Camera Network Research Group Meeting

Nov. 8 \& 15, 2007

Strategy: Use Clifford algebra to develop invariants for projective transformations.
(Reference: J. Lasenby, et al., "New Geometric Methods for Computer Vision: an application to structure and motion estimation", 1996)

Idea: Basis-free geometry (since it is basis-free, invariants will naturally arise, therefore it should be useful for our purposes.)

Given: 2 vectors, \mathbf{a}, \mathbf{b}

$\mathbf{a} \cdot \mathbf{b}$	$($ grade 0)
$\mathbf{a} \times \mathbf{b}$	$($ grade 1) (only valid for 3D)

More generally, introduce
$\mathbf{a} \wedge \mathbf{b} \quad(\mathbf{a}$ 'wedge' $\mathbf{b})$ is a directed area in sweeping from \mathbf{a} to \mathbf{b}.(see Fig. 1) (a parallelogram) (this is a bivector)
And,

$$
\begin{equation*}
\mathbf{b} \wedge \mathbf{a}=-\mathbf{a} \wedge \mathbf{b} \tag{1}
\end{equation*}
$$

In general, we have
$\mathbf{a}_{1} \wedge \mathbf{a}_{2} \wedge \ldots \wedge \mathbf{a}_{\mathrm{m}-1} \wedge \mathbf{a}_{\mathrm{m}} \quad$ (multi-vector) (a parallelopiped) (grade m)
Define:

$$
\begin{equation*}
\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b} \tag{2}
\end{equation*}
$$

it follows that:
$\mathbf{a b}=\mathbf{a} \wedge \mathbf{b} \quad$ if \mathbf{a}, \mathbf{b} are orthogonal, and
$\mathbf{a b}=\mathbf{a} \cdot \mathbf{b} \quad$ if \mathbf{a}, \mathbf{b} are parallel

$$
\begin{equation*}
\mathbf{b a}=\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \wedge \mathbf{a}=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \wedge \mathbf{b} \tag{4}
\end{equation*}
$$

so then,

$$
\begin{array}{ll}
\mathbf{a} \cdot \mathbf{b}=1 / 2(\mathbf{a b}+\mathbf{b a}) & \text { (associated inner product) } \\
\mathbf{a} \wedge \mathbf{b}=1 / 2(\mathbf{a b}-\mathbf{b a}) & \text { (associated } \text { outer product) } \tag{7}
\end{array}
$$

Definition:

A geometric algebra has a product satisfying:

$$
\begin{array}{ll}
(\mathbf{a b}) \mathbf{c}=\mathbf{a}(\mathbf{b} \mathbf{c}) & \mathbf{a} \lambda=\lambda \mathbf{a}, \text { for scalar } \lambda \\
\mathbf{a}(\mathbf{b}+\mathbf{c})=\mathbf{a b}+\mathbf{a c} & \mathbf{a}^{2}=|\mathbf{a}|^{2} \\
(\mathbf{b}+\mathbf{c}) \mathbf{a}=\mathbf{b a}+\mathbf{c a} &
\end{array}
$$

and the associated inner and outer product are defined by (6) and (7).

If $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is any orthonormal basis for \Re^{n}, we get a basis for the algebra:

$$
\left\{1,\left\{\sigma_{\mathrm{i}}\right\},\left\{\sigma_{\mathrm{i}} \wedge \sigma_{\mathrm{j}} \mid \mathrm{i} \neq \mathrm{j}\right\},\left\{\sigma_{\mathrm{i}} \wedge \sigma_{\mathrm{j}} \wedge \sigma_{\mathrm{k}} \mid \#\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}=3\right\}, \text { etc. }\right\}
$$

which will have 2^{n} elements. The highest grade element is $\sigma_{i} \wedge \ldots \wedge \sigma_{n}$.
Example: $\mathrm{n}=3$ The basis will have $2^{\mathrm{n}}=2^{3}=8$ elements:

$$
\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{3}, \sigma_{1} \sigma_{3}, \sigma_{1} \sigma_{2} \sigma_{3}\right\}
$$

(Note: $\sigma_{1} \cdot \sigma_{2}=0$ since the basis is orthonormal, hence $\sigma_{1} \sigma_{2}=\sigma_{1} \wedge \sigma_{2}$. .)
(Also, since the basis is orthonormal, $\sigma_{i}^{2}=\left|\sigma_{i}\right|^{2}=1$.)
(This is \mathfrak{R}^{8} with a strange multiplication.)
It follows that:

$$
\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{2}=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3}=-\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{3}=-\sigma_{1}^{2} \sigma_{2} \sigma_{2} \sigma_{3}^{2}=-\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}=-1
$$

Also, one can verify that $\sigma_{1} \sigma_{2} \sigma_{3}$ commutes with every element of the algebra (will be true for n odd).
Call $\sigma_{1} \sigma_{2} \sigma_{3}=\mathrm{i} \quad$ (i.e., $\sqrt{-1}$)
It follows that:

$$
\begin{equation*}
\mathrm{i} \sigma_{3}=\sigma_{1} \sigma_{2}, \mathrm{i} \sigma_{1}=\sigma_{2} \sigma_{3}, \mathrm{i} \sigma_{2}=\sigma_{3} \sigma_{1} \tag{8}
\end{equation*}
$$

These bivectors rotate vectors in their own plane by 90°.
Note: set $I=\mathrm{i} \sigma_{1}, J=-\mathrm{i} \sigma_{2}, K=\mathrm{i} \sigma_{3}$, then we get:
$I^{2}=J^{2}=K^{2}=I J K=-1$ (Hamilton's quaternions).
The algebra with basis $1, I, J, K$ is \Re^{4} with a strange multiplication, i.e., a sub-algebra of our geometric algebra.

General Rotations:

First, study reflections. (easier) (Any rotation is the product of two reflections.)
Consider a vector, a reflected in the plane orthogonal to the unit vector \mathbf{n}, to get \mathbf{a}^{\prime} (see Fig. 2).

Then, we can breakup a into components,

$$
\begin{equation*}
\mathbf{a}=\mathbf{a}_{\perp}+\mathbf{a}_{\|} \tag{9}
\end{equation*}
$$

the components perpendicular and parallel to \mathbf{n}, and then,

$$
\begin{equation*}
\mathbf{a}^{\prime}=\mathbf{a}_{\perp}-\mathbf{a}_{\|} \tag{10}
\end{equation*}
$$

Since \mathbf{n} is a unit vector, then $\mathbf{n}^{2}=|\mathbf{n}|^{2}=1$, and

$$
\begin{align*}
& \mathbf{a}=\mathbf{n}^{2} \mathbf{a}=\mathbf{n}(\mathbf{n} \cdot \mathbf{a}+\mathbf{n} \wedge \mathbf{a})=(\mathbf{n} \cdot \mathbf{a}) \mathbf{n}+\mathbf{n}(\mathbf{n} \wedge \mathbf{a}), \text { which implies that } \\
& \begin{aligned}
\mathbf{a}^{\prime}=\mathbf{a}_{\perp}-\mathbf{a}_{\|} & =\mathbf{n}(\mathbf{n} \wedge \mathbf{a})-(\mathbf{n} \cdot \mathbf{a}) \mathbf{n} \\
& =-(\mathbf{n} \cdot \mathbf{a}) \mathbf{n}-(\mathbf{n} \wedge \mathbf{a}) \mathbf{n} \\
& =-(\mathbf{n} \cdot \mathbf{a}+\mathbf{n} \wedge \mathbf{a}) \mathbf{n}=-\mathbf{n a n} .
\end{aligned}
\end{align*}
$$

Thus, reflecting in the plane perpendicular to \mathbf{n} is the map $\mathbf{a} \mapsto-$ nan
(Note: this works in any dimension)
Suppose you reflect in the plane perpendicular to \mathbf{n}, and then in the plane perpendicular to \mathbf{m}. (the product of two reflections) This is a rotation. Then, a maps to

$$
\begin{align*}
-\mathbf{m}(-\mathbf{n a n}) \mathbf{m} & =(\mathbf{m n}) \mathbf{a}(\mathbf{n m}) \\
& =R \mathbf{a} \tilde{R}, \quad \text { where } R=\mathbf{m n}, \tilde{R}=\mathbf{n m} . \tag{12}
\end{align*}
$$

R is called a rotor (it is also a multivector) (it encapsulates the information about the rotation.)

Notes:

1) R only has even grade elements (scalar, bivector, etc.) and $R \tilde{R}=\mathbf{m n n m}=\mathbf{m n}^{2} \mathbf{m}=\mathbf{m m}=1$, and $\tilde{R} R=1(\tilde{R}$ is the multiplicative inverse of R)
2) $\mathbf{a} \mapsto R \mathbf{a} \tilde{R} \quad$ handles rotations in any dimension.
3) Can rotate elements of any grade, not just vectors - very general!

Consider the problem of rotating \mathbf{n}_{1} to \mathbf{n}_{2}, say by angle θ (see Fig. 3). What is R ?

$$
\mathbf{n}_{2}=R \mathbf{n}_{1} \tilde{R} \Rightarrow \mathbf{n}_{2} R=R \mathbf{n}_{1}
$$

Note that one solution is $R=1+\mathbf{n}_{2} \mathbf{n}_{1}$, but we also need $\tilde{R} R=1$, so try $R=\alpha\left(1+\mathbf{n}_{2} \mathbf{n}_{1}\right)$, then

$$
\begin{aligned}
& 1=R \tilde{R}=\alpha^{2}\left(1+\mathbf{n}_{2} \mathbf{n}_{1}\right)\left(1+\mathbf{n}_{1} \mathbf{n}_{2}\right)=\alpha^{2}\left(1+1+\mathbf{n}_{2} \mathbf{n}_{1}+\mathbf{n}_{1} \mathbf{n}_{2}\right) \\
& =\alpha^{2}\left(2+2 \mathbf{n}_{2} \cdot \mathbf{n}_{1}\right)=2 \alpha^{2}\left(1+\mathbf{n}_{2} \cdot \mathbf{n}_{1}\right)
\end{aligned}
$$

So, $R=\frac{1+\mathbf{n}_{2} \mathbf{n}_{1}}{\sqrt{2\left(1+\mathbf{n}_{2} \cdot \mathbf{n}_{1}\right)}}=\exp \left(-i \frac{\theta}{2} \mathbf{n}\right)$,
where \mathbf{n} is orthogonal to the plane cut out by \mathbf{n}_{1} and \mathbf{n}_{2} (the axis of rotation).

11/15/07
Example: Camera motion from two scene projections with range data known. (3D-to-3D correspondences)

Assume cameras with optical centers at O_{1} and O_{2}, with respective Axes $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ and $\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}\right\}$, where σ_{3} is orthogonal to α_{1}, the image plane for camera one, and similarly for camera two. (See Fig. 4.) Let

$$
\begin{equation*}
\mathbf{X}=\overrightarrow{O_{1} P}, \mathbf{x}=\overrightarrow{O_{1} M_{1}}, \mathbf{t}=\overrightarrow{O_{1} O_{2}} \tag{14}
\end{equation*}
$$

The frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is rotated to a frame $\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}\right\}$ at O_{2}, where for R being the corresponding rotor, we have

$$
\begin{equation*}
\sigma_{i}^{\prime}=R \sigma_{i} \tilde{R} \Rightarrow \sigma_{i}=R^{-1} \sigma_{i}^{\prime} R \tag{15}
\end{equation*}
$$

Let $\breve{\mathbf{X}}=\overrightarrow{O_{2} P}$
Then,

$$
\begin{equation*}
\breve{\mathbf{X}}=\mathbf{X}-\mathbf{t} \tag{16}
\end{equation*}
$$

The observables (measurements) in the $\left\{\sigma_{\mathrm{i}}\right\}$ and $\left\{\sigma_{i}^{\prime}\right\}$ frames are:

$$
X_{i}=\mathbf{X} \cdot \sigma_{i}
$$

and

$$
X_{i}^{\prime}=\breve{\mathbf{X}} \cdot \sigma_{i}^{\prime}
$$

Define the vector \mathbf{X}^{\prime} in the $\left\{\sigma_{\mathrm{i}}\right\}$ frame as:

$$
\begin{equation*}
\mathbf{X}^{\prime}=X_{i}^{\prime} \sigma_{i}=X_{i}^{\prime}\left(R^{-1} \sigma_{i}^{\prime} R\right)=R^{-1}\left(X_{i}^{\prime} \sigma_{i}^{\prime}\right) R=R^{-1} \breve{\mathbf{X}} R=R^{-1}(\mathbf{X}-\mathbf{t}) R \tag{17}
\end{equation*}
$$

Rearranging:

$$
\begin{equation*}
\mathbf{X}-\mathbf{t}=R \mathbf{X}^{\prime} R^{-1} \Rightarrow \mathbf{X}=R \mathbf{X}^{\prime} R^{-1}+\mathbf{t} \tag{18}
\end{equation*}
$$

For simplicity, assume $|\mathbf{t}|=1$.
Suppose we have n point correspondences in the two views, and the coordinates in the views, $\left\{\mathbf{X}_{\mathrm{i}}\right\}$ and $\left\{\mathbf{X}_{\mathrm{i}}{ }^{\prime}\right\},(1 \leq i \leq \mathrm{n})$, are known.

We want to recover the camera motion, i.e., find R and \mathbf{t} that minimize the sum:

$$
\begin{equation*}
S=\sum_{i=1}^{n}\left[\mathbf{X}_{i}^{\prime}-R^{-1}\left(\mathbf{X}_{i}-\mathbf{t}\right) R\right]^{2} \tag{19}
\end{equation*}
$$

To find this minimization, we differentiate wrt R and \mathbf{t}, then set to zero. First, wrt \mathbf{t} :

$$
\begin{equation*}
\partial_{t} S=2 \sum_{i=1}^{n}\left[\mathbf{X}_{i}^{\prime}-R^{-1}\left(\mathbf{X}_{i}-\mathbf{t}\right) R \vec{\jmath}_{t}\left(R^{-1} \mathbf{t} R\right)\right. \tag{20}
\end{equation*}
$$

which will be zero when,

$$
\sum_{i=1}^{n}\left[\mathbf{X}_{i}^{\prime}-R^{-1}\left(\mathbf{X}_{i}-\mathbf{t}\right) R\right]=0
$$

Solve for \mathbf{t} :

$$
\begin{align*}
& \sum_{i=1}^{n}\left[\mathbf{X}_{i}^{\prime}-R^{-1} \mathbf{X}_{i} R\right]+n R^{-1} \mathbf{t} R=0 \quad \Leftrightarrow \quad R^{-1} \mathbf{t} R=\frac{1}{n} \sum_{i=1}^{n}\left[R^{-1} \mathbf{X}_{i} R-\mathbf{X}_{i}^{\prime}\right] \\
& \Leftrightarrow \quad \mathbf{t}=\frac{1}{n} \sum_{i=1}^{n}\left[\mathbf{X}_{i}-R \mathbf{X}_{i}^{\prime} R^{-1}\right]=\overline{\mathbf{X}}-R \overline{\mathbf{X}}^{\prime} R^{-1} \tag{21}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{\mathbf{X}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \quad \text { and } \quad \overline{\mathbf{X}}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}^{\prime} \tag{22}
\end{equation*}
$$

So, the optimal \mathbf{t} is the centroids of the points.
(Note: this is a known result that we have recovered here.)
(Note: there will be an issue with robustness since one outlier can adversely affect the results - a so-called 'black swan')

Then, differentiating wrt R, it can be shown that we get:

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\mathbf{X}_{i}^{\prime} \wedge R^{-1}\left(\mathbf{X}_{i}-\mathbf{t}\right) R\right]=0 \tag{23}
\end{equation*}
$$

Plug-in the optimal \mathbf{t} and we get:

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\mathbf{v}_{i} \wedge R^{-1} \mathbf{u}_{i} R\right]=0 \tag{24}
\end{equation*}
$$

where $\mathbf{u}_{i}=\mathbf{X}_{i}-\overline{\mathbf{X}}$ and $\mathbf{v}_{i}=\mathbf{X}_{i}^{\prime}$
We can find the rotor, R, using the Singular Value Decomposition (SVD) on the matrix \mathbf{F}, defined in terms of the \mathbf{u}_{i} 's and \mathbf{v}_{i} 's as:

$$
\begin{equation*}
\mathbf{F}_{\alpha \beta} \equiv \sigma_{\alpha} \cdot \underline{f}\left(\sigma_{\beta}\right)=\sum_{i=1}^{n}\left(\sigma_{\alpha} \cdot \mathbf{u}_{i}\right)\left(\sigma_{\beta} \cdot \mathbf{v}_{i}\right) \tag{25}
\end{equation*}
$$

then the SVD gives $\mathbf{F}=U S V^{\mathrm{T}}$, and then $R=V U^{\mathrm{T}}$.

Paper for next time (Matt):
"A geometric approach for the theory and applications of 3D projective invariants" Bayro-Corrochano, Eduardo; Banarer, Vladimir
Journal of Mathematical Imaging and Vision, v. 16, n. 2, March 2002, pp. 131-154

Appendix:

Fig. 1-a/ $\wedge \mathbf{b}$

Fig. 2 - Vector a reflected in the plane orthogonal to n .

Fig. 3 - Rotation of \mathbf{n}_{1} to \mathbf{n}_{2}.

Fig. 4 - Object point viewed from two camera positions.

