Geometric Algebra

Prof. Nigel Boston

Camera Network Research Group Meeting

Nov. 8 & 15, 2007

Strategy: Use Clifford algebra to develop invariants for projective transformations.

(Reference: J. Lasenby, et al., "New Geometric Methods for Computer Vision: an application to structure and motion estimation", 1996)

Idea: Basis-free geometry (since it is basis-free, invariants will naturally arise, therefore it should be useful for our purposes.)

Given: 2 vectors, a, b

a ∙ b	(grade 0)
a x b	(grade 1) (only valid for 3D)

More generally, introduce

a ∧ **b** (**a** 'wedge' **b**) is a directed area in sweeping from **a** to **b**.(see Fig. 1) (a parallelogram) (this is a *bivector*)

And,

$$\mathbf{b} \wedge \mathbf{a} = -\mathbf{a} \wedge \mathbf{b} \tag{1}$$

In general, we have

 $\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_{m-1} \wedge \mathbf{a}_m$ (*multi-vector*) (a parallelopiped) (grade m)

Define:

 $\mathbf{a}\mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b} \tag{2}$

it follows that:

 $\mathbf{ab} = \mathbf{a} \wedge \mathbf{b}$ if \mathbf{a} , \mathbf{b} are orthogonal, and (3)

 $\mathbf{a}\mathbf{b} = \mathbf{a} \cdot \mathbf{b}$ if \mathbf{a} , \mathbf{b} are parallel (4)

 $\mathbf{b}\mathbf{a} = \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \wedge \mathbf{a} = \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \wedge \mathbf{b}$ (5)

so then,

$\mathbf{a} \cdot \mathbf{b} = \frac{1}{2} \left(\mathbf{a} \mathbf{b} + \mathbf{b} \mathbf{a} \right)$	(associated inner product)	(6)
$\mathbf{a} \wedge \mathbf{b} = \frac{1}{2} (\mathbf{ab} - \mathbf{ba})$	(associated outer product)	(7)

Definition:

A geometric algebra has a product satisfying: (ab)c = a(bc) $a\lambda = \lambda a$, for scalar λ $a(b + c) = ab + ac <math>a^2 = |a|^2$ (b + c)a = ba + ca

and the associated inner and outer product are defined by (6) and (7).

If $\{\sigma_1, \ldots, \sigma_n\}$ is any orthonormal basis for \Re^n , we get a basis for the algebra:

{1, { σ_i }, { $\sigma_i \land \sigma_j \mid i \neq j$ }, { $\sigma_i \land \sigma_j \land \sigma_k \mid #$ {i, j, k} = 3}, etc.}

which will have 2^n elements. The highest grade element is $\sigma_i \wedge \ldots \wedge \sigma_n$.

Example: n = 3 The basis will have $2^n = 2^3 = 8$ elements:

 $\{1, \sigma_1, \sigma_2, \sigma_3, \sigma_1\sigma_2, \sigma_2\sigma_3, \sigma_1\sigma_3, \sigma_1\sigma_2\sigma_3\}$

(Note: $\sigma_1 \cdot \sigma_2 = 0$ since the basis is orthonormal, hence $\sigma_1 \sigma_2 = \sigma_1 \wedge \sigma_2$.) (Also, since the basis is orthonormal, $\sigma_i^2 = |\sigma_i|^2 = 1$.) (This is \Re^8 with a strange multiplication.)

It follows that:

$$(\sigma_1 \sigma_2 \sigma_3)^2 = \sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2 \sigma_3 = -\sigma_1 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_3 = -\sigma_1^2 \sigma_2 \sigma_2 \sigma_3^2 = -\sigma_1^2 \sigma_2^2 \sigma_3^2 = -1$$

Also, one can verify that $\sigma_1 \sigma_2 \sigma_3$ commutes with every element of the algebra (will be true for n odd).

Call $\sigma_1 \sigma_2 \sigma_3 = i$ (i.e., $\sqrt{-1}$)

It follows that:

$$i \sigma_3 = \sigma_1 \sigma_2, i \sigma_1 = \sigma_2 \sigma_3, i \sigma_2 = \sigma_3 \sigma_1$$
 (8)

These bivectors rotate vectors in their own plane by 90°.

Note: set $I = i \sigma_1$, $J = -i \sigma_2$, $K = i \sigma_3$, then we get: $I^2 = J^2 = K^2 = IJK = -1$ (Hamilton's quaternions).

The algebra with basis 1, *I*, *J*, *K* is \Re^4 with a strange multiplication, i.e., a sub-algebra of our geometric algebra.

General Rotations:

First, study reflections. (easier) (Any rotation is the product of two reflections.)

Consider a vector, **a** reflected in the plane orthogonal to the unit vector **n**, to get \mathbf{a}' (see Fig. 2).

Then, we can breakup **a** into components,

$$\mathbf{a} = \mathbf{a}_{\perp} + \mathbf{a}_{\parallel},\tag{9}$$

the components perpendicular and parallel to \mathbf{n} , and then,

$$\mathbf{a}' = \mathbf{a}_{\perp} - \mathbf{a}_{\parallel} \,. \tag{10}$$

Since **n** is a unit vector, then $\mathbf{n}^2 = |\mathbf{n}|^2 = 1$, and

$$\mathbf{a} = \mathbf{n}^{2}\mathbf{a} = \mathbf{n}(\mathbf{n} \cdot \mathbf{a} + \mathbf{n} \wedge \mathbf{a}) = (\mathbf{n} \cdot \mathbf{a})\mathbf{n} + \mathbf{n}(\mathbf{n} \wedge \mathbf{a}), \text{ which implies that}$$
$$\mathbf{a}' = \mathbf{a}_{\perp} - \mathbf{a}_{\parallel} = \mathbf{n}(\mathbf{n} \wedge \mathbf{a}) - (\mathbf{n} \cdot \mathbf{a})\mathbf{n}$$
$$= -(\mathbf{n} \cdot \mathbf{a})\mathbf{n} - (\mathbf{n} \wedge \mathbf{a})\mathbf{n}$$
$$= -(\mathbf{n} \cdot \mathbf{a} + \mathbf{n} \wedge \mathbf{a})\mathbf{n} = -\mathbf{n}\mathbf{a}\mathbf{n}.$$
(11)

Thus, reflecting in the plane perpendicular to **n** is the map $\mathbf{a} \mapsto -\mathbf{nan}$ (Note: this works in any dimension)

Suppose you reflect in the plane perpendicular to \mathbf{n} , and then in the plane perpendicular to \mathbf{m} . (the product of two reflections) This is a rotation. Then, \mathbf{a} maps to

$$-\mathbf{m}(-\mathbf{nan})\mathbf{m} = (\mathbf{mn})\mathbf{a}(\mathbf{nm})$$
$$= R\mathbf{a}\widetilde{R}, \text{ where } R = \mathbf{mn}, \ \widetilde{R} = \mathbf{nm}.$$
(12)

R is called a *rotor* (it is also a *multivector*) (it encapsulates the information about the rotation.)

Notes:

- 1) *R* only has even grade elements (scalar, bivector, etc.) and $R\tilde{R} = \mathbf{mnm} = \mathbf{mn}^2\mathbf{m} = \mathbf{mm} = 1$, and $\tilde{R}R = 1$ (\tilde{R} is the multiplicative inverse of R)
- 2) $\mathbf{a} \mapsto R\mathbf{a}\widetilde{R}$ handles rotations in any dimension.
- 3) Can rotate elements of any grade, not just vectors very general!

Nigel Boston

Consider the problem of rotating \mathbf{n}_1 to \mathbf{n}_2 , say by angle θ (see Fig. 3). What is *R*?

$$\mathbf{n}_{2} = R\mathbf{n}_{1}\widetilde{R} \Rightarrow \mathbf{n}_{2}R = R\mathbf{n}_{1}$$
Note that one solution is $R = 1 + \mathbf{n}_{2}\mathbf{n}_{1}$, but we also need $\widetilde{R}R = 1$, so try
$$R = \alpha(1 + \mathbf{n}_{2}\mathbf{n}_{1})$$
, then
$$1 = R\widetilde{R} = \alpha^{2}(1 + \mathbf{n}_{2}\mathbf{n}_{1})(1 + \mathbf{n}_{1}\mathbf{n}_{2}) = \alpha^{2}(1 + 1 + \mathbf{n}_{2}\mathbf{n}_{1} + \mathbf{n}_{1}\mathbf{n}_{2})$$

$$= \alpha^{2}(2 + 2\mathbf{n}_{2} \cdot \mathbf{n}_{1}) = 2\alpha^{2}(1 + \mathbf{n}_{2} \cdot \mathbf{n}_{1})$$
So,
$$R = \frac{1 + \mathbf{n}_{2}\mathbf{n}_{1}}{\sqrt{2(1 + \mathbf{n}_{2} \cdot \mathbf{n}_{1})}} = \exp\left(-i\frac{\theta}{2}\mathbf{n}\right),$$
(13)

where **n** is orthogonal to the plane cut out by \mathbf{n}_1 and \mathbf{n}_2 (the axis of rotation).

11/15/07

Example: Camera motion from two scene projections with range data known. (3D-to-3D correspondences)

Assume cameras with optical centers at O_1 and O_2 , with respective Axes { σ_1 , σ_2 , σ_3 } and { $\sigma'_1, \sigma'_2, \sigma'_3$ }, where σ_3 is orthogonal to α_1 , the image plane for camera one, and similarly for camera two. (See Fig. 4.) Let

$$\mathbf{X} = \overrightarrow{O_1 P}, \ \mathbf{x} = \overrightarrow{O_1 M_1}, \ \mathbf{t} = \overrightarrow{O_1 O_2}$$
(14)

The frame { σ_1 , σ_2 , σ_3 } is rotated to a frame { $\sigma'_1, \sigma'_2, \sigma'_3$ } at O_2 , where for *R* being the corresponding rotor, we have

$$\sigma_i' = R\sigma_i \widetilde{R} \Longrightarrow \sigma_i = R^{-1} \sigma_i' R \tag{15}$$

Let $\mathbf{X} = \overrightarrow{O_2 P}$

Then,

$$\ddot{\mathbf{X}} = \mathbf{X} - \mathbf{t} \tag{16}$$

The observables (measurements) in the $\{\sigma_i\}$ and $\{\sigma'_i\}$ frames are:

$$X_i = \mathbf{X} \cdot \boldsymbol{\sigma}_i$$

and

$$X'_i = \mathbf{X} \cdot \boldsymbol{\sigma}'_i$$

Define the vector \mathbf{X}' in the $\{\sigma_i\}$ frame as:

$$\mathbf{X}' = X_i' \boldsymbol{\sigma}_i = X_i' \left(R^{-1} \boldsymbol{\sigma}_i' R \right) = R^{-1} \left(X_i' \boldsymbol{\sigma}_i' \right) R = R^{-1} \mathbf{\tilde{X}} R = R^{-1} \left(\mathbf{X} - \mathbf{t} \right) R$$
(17)

Rearranging:

$$\mathbf{X} - \mathbf{t} = R\mathbf{X}'R^{-1} \Longrightarrow \mathbf{X} = R\mathbf{X}'R^{-1} + \mathbf{t}$$
(18)

For simplicity, assume $|\mathbf{t}| = 1$.

Suppose we have n point correspondences in the two views, and the coordinates in the views, $\{X_i\}$ and $\{X_i'\}$, $(1 \le i \le n)$, are known.

We want to recover the camera motion, i.e., find *R* and **t** that minimize the sum:

$$S = \sum_{i=1}^{n} \left[\mathbf{X}'_{i} - R^{-1} (\mathbf{X}_{i} - \mathbf{t}) R \right]^{2}$$
(19)

To find this minimization, we differentiate wrt *R* and **t**, then set to zero. First, wrt **t**:

$$\partial_{t}S = 2\sum_{i=1}^{n} \left[\mathbf{X}_{i}^{\prime} - R^{-1} (\mathbf{X}_{i} - \mathbf{t}) R \right]_{t} \left(R^{-1} \mathbf{t} R \right)$$
(20)

which will be zero when,

$$\sum_{i=1}^{n} \left[\mathbf{X}_{i}' - R^{-1} (\mathbf{X}_{i} - \mathbf{t}) R \right] = 0$$

Solve for **t**:

$$\sum_{i=1}^{n} \left[\mathbf{X}'_{i} - R^{-1} \mathbf{X}_{i} R \right] + nR^{-1} \mathbf{t}R = 0 \quad \Leftrightarrow \quad R^{-1} \mathbf{t}R = \frac{1}{n} \sum_{i=1}^{n} \left[R^{-1} \mathbf{X}_{i} R - \mathbf{X}'_{i} \right]$$
$$\Leftrightarrow \quad \mathbf{t} = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{X}_{i} - R \mathbf{X}'_{i} R^{-1} \right] = \overline{\mathbf{X}} - R \overline{\mathbf{X}}' R^{-1}$$
(21)

Nigel Boston

where

$$\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \text{ and } \overline{\mathbf{X}}' = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}'_{i}$$
(22)

So, the optimal **t** is the centroids of the points. (Note: this is a known result that we have recovered here.) (Note: there will be an issue with robustness since one outlier can adversely affect the results – a so-called 'black swan')

Then, differentiating wrt *R*, it can be shown that we get:

$$\sum_{i=1}^{n} \left[\mathbf{X}_{i}^{\prime} \wedge R^{-1} (\mathbf{X}_{i} - \mathbf{t}) R \right] = 0$$
(23)

Plug-in the optimal **t** and we get:

$$\sum_{i=1}^{n} \left[\mathbf{v}_{i} \wedge R^{-1} \mathbf{u}_{i} R \right] = 0$$
(24)

where $\mathbf{u}_i = \mathbf{X}_i - \overline{\mathbf{X}}$ and $\mathbf{v}_i = \mathbf{X}'_i$

We can find the rotor, R, using the Singular Value Decomposition (SVD) on the matrix **F**, defined in terms of the **u**_i's and **v**_i's as:

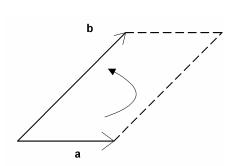
$$\mathbf{F}_{\alpha\beta} \equiv \boldsymbol{\sigma}_{\alpha} \cdot \underline{f}(\boldsymbol{\sigma}_{\beta}) = \sum_{i=1}^{n} (\boldsymbol{\sigma}_{\alpha} \cdot \mathbf{u}_{i}) (\boldsymbol{\sigma}_{\beta} \cdot \mathbf{v}_{i})$$
(25)

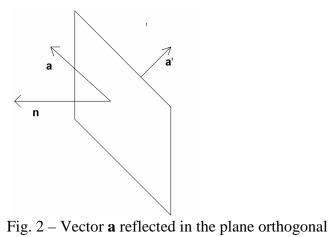
then the SVD gives $\mathbf{F} = USV^{\mathrm{T}}$, and then $R = VU^{\mathrm{T}}$.

Paper for next time (Matt):

"A geometric approach for the theory and applications of 3D projective invariants" Bayro-Corrochano, Eduardo; Banarer, Vladimir Journal of Mathematical Imaging and Vision, v. 16, n. 2, March 2002, pp. 131-154

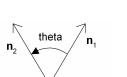
Appendix:

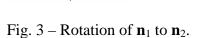




to **n.**

Fig. 1 - $\mathbf{a} \wedge \mathbf{b}$





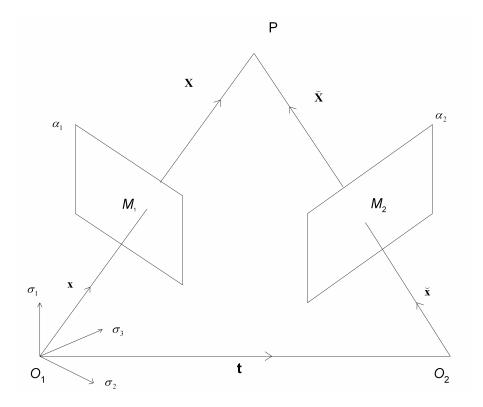


Fig. 4 – Object point viewed from two camera positions.