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Fundamental Limitations on Projective 
Invariants of Planar Curves 

Kalle Astrom 

Abstract-In this paper, some fundamental limitations of projective 
invariants of non-algebraic planar curves are discussed. It is shown that 
all curves within a large class can be mapped arbitrarily close to a circle 
by projective transformations. It is also shown that arbitrarily close to 
each of a finite number of closed planar curves there is one member of a 
set of projectively equivalent curves. Thus a continuous projective in- 
variant on closed curves is constant. This also limits the possibility of 
finding so called projective normalisation schemes for closed planar 
curves. 

Index Items- Projective and afine invariants, recognition, Haus- 
dorff metric. 

I. INTRODUCTION 

The pinhole camera is often an adequate model for projecting 
points in three dimensions onto a plane. Using this model it is 
straightforward to predict the image of a collection of objects in 
specified positions. The inverse problems, to identify and to deter- 
mine the three-dimensional positions of possible objects from an im- 
age, are however much more difficult. Traditionally recognition has 
been done by matching each model in a model data base with parts of 
the image. Recently, model based recognition using viewpoint invari- 
ant features of planar curves and point configurations has attracted 
much attention, [7]. Invariant features are computed directly from the 
image and used as indices in a model data base. This gives algorithms 
which are significantly faster than the traditional methods. These 
techniques cannot, however, be used to recognise general curves or 
point features in three dimensions by means of one single image. 
Additional information, e.g. that the object is planar, is needed. For 
point configurations the reason is that only trivial invariants exist in 
the general case, as is shown in [4], [9]. In this paper it is shown that 
there are some fundamental limitations also for planar curves. 

More specifically, two theorems are presented that elucidate these 
limitations. The first one, in Section 11, states that each curve in a 
large class can be transformed into a curve arbitrarily close to a circle 
in a strengthened Hausdorff metric. The second theorem, in Section 
111, states that given a finite number of closed planar curves r], ..., 
r,, it is possible to construct a set of projectively equivalent planar 
curves r’l, . . . , r‘, , such that , in the Hausdorff metric is arbitrarily 
close to Ti, t=l, ..., m. These two theorems enlighten the limitations 
of invariant based recognition schemes. The first one tells us that 
choosing a distinguished frame by maximising some feature over all 
projective transformations is not suitable, since in the limit many 
curves look like circles. The second theorem tells us more generally 
that every continuous invariant must be constant. Some consequences 
of these theorems will be discussed in Section IV. Their relevance to 
computer vision is that the euclidean errors in image processing do 
not interact well with projective equivalence. 
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11. MANY CURVES LOOK LIKE A CIRCLE 

This paper is concerned with the shape of curves and the effect of 
projective transformations on curves. According to the pinhole cam- 
era model such transformations appear naturally in the study of vi- 
sion systems. The following notations will be used. 

Let & b e  the set of all curves which can be represented as a con- 
tinuous injective mapping from the unit circle to the plane, such that 
the arclength 1 is well defined. Let A(C) denote area enclosed by the 
curve C, It is a well known fact from the calculus of variations that 
l ( c )  / A(C) 2 4 rc, with equality if and only if C is a circle. For a 
specific curve C E &, let PC be the set of projective transformations 
that sends C into &. In other words such transformations do not send 
any of the points of C to infinity. Two images of the same planar 
curve, caught by a pinhole camera, are always related by such a 
transformation. 

A metric on &is  defined by 

d(CI,C2) = max min llzl-z~ll + 
ZlEC, z&C* 

L2EC2 Z,€C, 
max min llzl-zzll + ~l(Cl)-l(Cz)l. (1) 

were lkN is the euclidean norm. This metric is a modification of the 
Hausdorff metric on compact subsets of the plane, i.e. the max-min 
parts, the modification being that also the arclengths should be com- 
pared. A small value of d depicts that every point on each curve is 
close to some point on the other curve, and that the arclengths are 
almost equal. This metric will be used to compare two projected 
curves in the image plane. Due to digitisation effects and other errors 
in image acquisition, it is difficult to discriminate two image curves 
that are close in this metric. Theorems 1 and 3 below are automati- 
cally valid also in the ordinary Hausdorff metric. The modified metric 
is need@ for the proof of Corollary 2. 

Let & c & consist of those curves in &having the property that the 
boundary of the convex hull has at least one smooth, curved part. 

Theorem 1: Let CO be a circle of radius one. Then 

C E &- inf d@(C), CO) = 0. 
PE pc  

One interpretation of this theorem is that for some sequence of 
viewpoints and internal calibrations the images of C look more and 
more like a circle. As will be seen in the proof below the projective 
transformations involved when approaching the limit are quite ex- 
treme, but still non-singular. 

Proof: 
Choose a point a E C so that C is smooth at a, and so that the 

tangent at a intersects C only at a .  Choose an affine coordinate sys- 
tem with origin at a ,  with x-axis along the tangent, and so that the 
curvature at a equals one. 

The idea of the proof is to construct a sequence of transformations 
(p,,); so that p,,(C) -+ C,, as n -+ -, in the metric d. The image of a 
part of the curve around a will form the main part of CO, and the re- 
maining part of C will be mapped into a neighbourhood of one par- 
ticular point of CO. 

The transformations p,, are defined by 

We will also use the ellipses 

C ~ = { ( ( 1 + ~ ) ~ 0 s t , s i n t + l ) l t ~  Z), € > - I  (3) 

with center at the point (O,l), axis of length 1 + ~  in the x-direction and 
of length 1 in the y-direction. In particular, CO is the unit circle 2 + 
0-1)' = 1. These ellipses intersect at (0 ,O) and at (0,2). 

One can easily verify, e.g. using homogeneous coordinates, that 
the family (p,,); has the following properties: 

By (6), the transformations p n  reparametrise the ellipses Ce. It will 
be seen that if n > 1 a vicinity around (0,O) expands and a vicinity 
around (0,2) contracts. More precisely, by rewriting (2) as 

it follows that for every compact region D in the open upper half 
plane { (x ,Y)  I Y > 01, 

sup I p,,(x,y) - (0,2) I I Kln, (10) 
D 

for some constant K. Hence (p,,); is uniformly convergent to the con- 
stant function (0,2) on D. Since the Jacobians of p,, are uniformly 
bounded by O(1ln) on D, it also follows that the transformations p,, 
are uniformly Lipschitz continuous with Lipschitz constant O(l/n) on 
D, i.e. 

By changing coordinates with t(x,y) = (-x, 2-y) the inverse pro- 
jective transformation p;' is related to p,, by p,' = t-lop,,ot. Thus the 
inverse transformations p i '  also have contractive properties analo- 
gous to (10) and (1 1) in every compact region D in the open half 
plane { (x,y) I y < 2).  All points of p i '  (D) tend to (0 ,O) and the ar- 
clength of all curves tend to zero as n increases. 

Notice again that as n increases so does both the contractive prop- 
erties of p,, on every compact region above the tangent to CO at (0,O) 
and the contractive properties of p,' on every compact region below 
the tangent to CO at (0,2). This will be used in the proof of Theorem 
3. 

Take E > 0, and let Cbcal be the connected component of C in a 
neighbourhood of (O,O), that lies between the ellipses Ce and C-*, cf. 
Fig. 1. Since the curve p,,(ClocaJ lies between the ellipses, and these 
are invariant under p,,, the following inequalities hold, 

1 - E < I (u,v) - (0,l) I < 1 + E, V(u,v) E p,,(Cbcaocar), Vn. 

The rest of the curve, Crc,v, = C \ Ciocai, is compact and belongs to 
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1 z?s, . . . . . , 

Fig. 1. The curve is split into two parts. A local part Clucai belongs to the re- 
gion bounded by the line and the two ellipses. Crest is the complementary part 
of c. 

the upper half plane. By the uniform convergence (lo), for each E > 0 
we can choose n SO that all points of p,,(Crest) lie within the distance E 

from (0,2), cf. Fig. 1 .  Hence 

lim ( max min llzl - z211 + 
n+- Z I E ~ Q  t r c 6  

By this, one has control of the first two terms in the definition 
of d .  A consequence that will be used below, is that 
A@,(C)) + R. as n + m. 

It remains to consider the third term in d .  The curve C is smooth 
around (O,O), so it is possible to choose Clocal so small that together 
with the lines LI and from the endpoints of Clocal to (0 ,2 ) ,  it forms 
the boundary of a convex region R,  cf. Fig. 2 .  Since the shortest path 
circumventing a bounded region is the boundary of its convex hull, 
and since pn(ClocuJ is part of the boundary of the convex region p,(R), 

ocal) 

Fig. 2. The local part Clucal together with two line segments form the bound- 
ary of a convex region R.  For every n the transformed region p,(R) is convex 
and belongs to the interior of the ellipse Ce. 

we can deduce that Z(pn(Cbcal)) < Z(CJ for all n. By comparison with a 
circle of radius 1 + e we get 1(CJ < 2x(1 + e).  Since C,, lies in a 
compact subset of the open upper half plane, by means of (1 1 )  we 
have 

lim sup I(p,(C)) I lim sup Z(p,,(Cbcal)) + 
n + -  n + -  

lim sup f(pn(Cre,s,)) I 2 R (1+ E) + 0. 
n + -  

Hence lim sup, -+ - I(p,(C)) 2 2.n. On the other hand, since 
z(P,(c)) / A ( ~ , ( c ) )  2 4.n, it follows that 

lim inf I(p,(C)) 2 2x 
n + -  

Hence limn +- I(p,(C)) = Z(Co) = 2x , which concludes the proof. 

An immediate corollary is 
Corollary 2: 

It has been proposed, e.g. in [ 2 ] ,  to base a canonical representation 
p(C)  of the curve C on the transformation that minimises the in- 
verse compactness measure Z(P(C))* / A(p(_C)). According to the 
corollary, the minimum is not attained if C E d. This canonical repre- 
sentation is thus only well defined for curves that do not have a 
smooth and curved part on the convex hull, e.g. for polygons. How- 
ever, it is_still possible that local minima could be used, even for 
curves in d. 

111. PROJECTING A DUCK TO A RABBIT 

In the proof of Theorem 1 one notices that the main part of the 
curve is squeezed into a neighbourhood of a point. For large n, the 
curve p,(C) looks like a circle, but has a small ripple that corresponds 
to the main part of the curve C. It tums out that if we slightly perturb 
the curve p,,(C) outside this ripple and then do the inverse projective 
transformation, the new curve is almost identical to the original one. 
A consequence is the following somewhat surprjsing theorem. 

Fig. 3. The upper two curves are not projectively equivalent, but the lower 
two curves are. The lower curves are constructed by introducing small ripples 
along the convex hull, these are illustrated in the magnified pictures. 

Theorem 3: Given rI, ..., r,,, E d .  To every e > 0, there exists a 
curve C and projective transformations 41, . . ., qm so that 

The theorem is illustrated in Fig. 3. Notice that the curves Ti do 
not have to be smooth. 
Proof:  

Since there is a smooth curve arbitrarily close to every curve ful- 
filling the assumptions above, it is no restriction to assume that the 
curves rI, . . ., rm are smooth and therefore in 0. 

Place m points (Pi>: and m closed regions (Sj)'; equally spaced 
around the unit circle CO according to Fig. 4. The regions Si are sup- 
posed to form a band around CO, so thin that Ui  s Si is disjoint from 
the tangent to C, at Pj. 

In the proof of Theorem 1, it was seen that every smooth curve 
can be projected arbitrarily close to Cfl . The main part of the curve 
forms a small ripple close to a point on the unit circle. In this way not 
only is it possible to make the whole curve closer to C, and the ripple 
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Fig. 4 
(Si) yare placed around CO in the case m = 4. The curve rj is projected into 
an almost circular curve nj(rj) with a small ripple around Pj. This is illus- 
trated in the right figure. 

The left figure illustrates how the points (P,) :and the closed regions 

around P, smaller but at the same time the contractive properties of 
the inverse transformation on a region like U,,, S, is increased, cf. the 
discussion after (1 1). By the construction in the proof of Theorem 1 it 
is thus possible to select a transformation n,, and also to cut each 
curve r’ into two pieces r,,local, and r,,,,,, so that the following prop- 
erties are obtained: 

~, ( r ’ . l oco / )  = U, #, S, 
n,(r,,rev) c S, 
d(qr,),C,,) < 1 1 m. 
l(Z,(r, ,,,*)) < 3 1 m. 
q, = n,-’ shrinks all curves in U, +, S, of arclength less than 
a constant M = 3n + 2 into a curve with arclength less than 
d2. The reason for the choice of constant will become 
clear later. 

Let C be constructed by gluing the patches nj(rj,,,,s,) and the line 
segments obtained by radially connecting the endpoints of nj(rj,re,J 
Both C \ nj(rj.rcsr) and nf(rj./ocoJ are in U i  Si. Since C is a patch of 
m curves each with arclength less than 3 n lm, and of m radial line 
segments of length less than 2/m, the total arclength of C \ nj(T;,rpsr) is 
certainly less than M = 3x + 2. By the contractive properties of qj, 
this means that l(qj(C \ zj(rj,re.J)) < d2. The curve nj(rj,/oco/) also has 
arclength less than M, so l(r,,,,,,,)) < d2. Since these curves have the 
same endpoints, it follows that 

The remaining part of C is nj(rj,re.vr), which is mapped identically into 

Notice that the transformations qj are physically realisable in the 
pinhole camera model. The construction of C and qi in the proof can 
be done by explicit formulas. An algorithm based on the proof has 
been implemented in MATLAB. Fig. 3. has been constructed using 
this algorithm. Fig. 5. shows what the mixed curve C looks like from 
eight different viewpoints. Observe that these eight different views 
are all projectively equivalent. Notice the kind of extreme, but non- 
singular, projective transformations that are involved. 

rj,rtw by 4,. Hence d(qj(C),r,) < E. 

IV. IMPLICATIONS FOR INVARIANTS 
By an invariant under a set of transformations P on @ is meant a 

function $ on & with values in some set V such that $(C) = $@(C)) 
for every curve C E @ and every transformation p E P. If @ and V 
are metric spaces, we can talk about continuity of invariants. 

One consequence of Theorem 1 is that in every neighbourhood of 
the circle Ne,c8, = (C  I d(C,C,,) < E), $ attains every value that it at- 

__ 

tains on g. In particular if c$ is non-constant on 2, this means that c$ 
is discontinuous at Co. 

This is however not a very useful observation. Discontinuities of 
this kind appear for many of the most valuable invariants. For in- 
stance whenever the group of transformations contains the similarity 
group, each object can be contracted into an €-neighbourhood of the 
origin, where thus @ attains all its values and becomes discontinuous. 
Thus e.g. even the crossratio has discontinuities in this sense, which 

Fig. 5.  Eight projectively equivalent views of the same planar curve. The duck 
transforms into something that looks like a circle and then into a rabbit. A 
closer look at the fourth curve reveals that the north and south pole is slightly 
rippled, see the magnifications. 

tells us that the property of having a discontinuity at one point is not 
very informative. 

More interesting conclusions about invariants can be obtained 
from Theorem 3. 

CorolrcUy 4: Every projective invariant + from @ to a metric 
space V, e.g. the real line, maps all curves at which it is continuous 
onto the same value. 

Proof: 
Assume to the contrary that r l  = $(I-,) # r, = ~ r 2 ) ,  and that 4 is 

continuous both at rl and r2. It is possible to find disjoint open sets 
0, 3 r ,  and O2 3 r2. According to Theorem 3 the inverse images 
$’ (0,) and @‘ (O,), which are open sets around TI and r,, contain a 
projectively equivalent pair of curves, contradicting the assumption. 

a 

V. CONCLUSIONS 

Corollary 4 tells that for invariants the properties of being con- 
tinuous and discriminating are contradictory. Notice that the theorem 
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only holds if we consider the whole set &. If more information about 
the curves are given, e.g. if fiducial points are given, then it might be 
possible to construct invariants which are non-constant and continu- 

Thus the euclidean nature of image distorsion and the projective 
nature of camera geometry do not interact well. It is possible that one 
could construct projective invariants which are continuous with re- 
spect to some other metric, but would this metric be relevant? 

ous. 
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An Evaluation of Intrinsic 
Dimensionality Estimators 

Peter J .  Verveer and Robert P.W. Duin 

Abstract - The intrinsic dimensionality of a data set may be useful for 
understanding the properties of classifiers applied to it and thereby for 
the selection of an optimal classifier. 

In this paper we compare the algorithms for two estimators of the in- 
trinsic dimensionality of a given data set and extend their capabilities. 
One algorithm is based on the local eigenvalues of the covariance matrix 
in several small regions in the feature space. The other estimates the in- 
trinsic dimensionality from the distribution of the distances from an ar- 
bitrary data vector to a selection of its neighbors. 

The characteristics of the two estimators are investigated and the re- 
sults are compared. It is found that both can be applied successfully, but 
that they might fail in certain cases. The estimators are compared and 
illustrated using data generated from chromosome banding profiles. 

I. INTRODUCTION 

A traditional practice in the field of pattern recognition is to select 
a small set of features before training a classifier. Neural network 
applications, however, have shown many examples where networks 
are trained successfully having large numbers of inputs, sometimes 
even larger than the number of training objects, see for example [ 1- 
41. One way to understand this is to assume that in these applications 
the data is located in some low-dimensional, possibly non-linear 
subspace of the feature space, see Duin [5 ] .  Due to its non-linear 
mapping properties a neural network might be able to approximate 
this low-dimensional subspace by its first layers and to perform the 
classification in this subspace by its output layer. 

Before investigating this hypothesis, the tools to analyze data in 
non-linear subspaces have to be defined and evaluated. In this paper 
we report on such an evaluation for estimators of the intrinsic di- 
mensionality. This can be defined as the smallest number of inde- 
pendent parameters that is needed to generate the given data set, see 
Bennett [6] and Trunk [7 ] .  

Consider a set of Mimensional  vectors with intrinsic dimen- 
sionality K.  The usual interpretation is that the vectors lie on a pos- 
sibly non-linear surface with topological dimensionality K: they lie 
in a K-dimensional subspace of the Mimensional  feature space. We 
represent a vector x in this set using the following model: 

x = f (4) +U, (1) 

where f(4) is an Mimensional  (possibly non-linear) function of the 
K-dimensional parameter vector 4. The Mimensional  variable U 
denotes the noise. If U is equal to zero the function f defines a K- 
dimensional surface or sheet S containing the vectors. 

If U is not zero, then x does not lie exactly on S but will have an 
offset perpendicular to S. Thus the effect of noise on the data set can 
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