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Abstract

We describe a calibration procedure for a multi-camera
rig. Consider a large number of synchronized cameras ar-
ranged in some space, for example, on the walls of a room
looking inwards. It is not necessary for all the cameras to
have a common field of view, as long as every camera is
connected to every other camera through common fields of
view. Switching off the lights and waving a wand with an
LED at the end of it, we can capture a very large set of point
correspondences (corresponding points are captured at the
same time stamp). The correspondences are then used in
a large, nonlinear eigenvalue minimization routine whose
basis is the epipolar constraint. The eigenvalue matrix en-
capsulates all points correspondences between every pair of
cameras in a way that minimizing the smallest eigenvalue
results in the projection matrices, to within a single perspec-
tive transformation. In a second step, given additional data
from waving a rod with two LEDs (one at each end) the full
projection matrices are calculated. The method is extremely
accurate—the reprojections of the reconstructed points were
within a pixel.

1. Introduction

In this paper, it is shown how to obtain the projection ma-
trices for M cameras given N points, each projected into a
subset of theM cameras. The calibration method uses every
correspondence between every camera in a unified frame-
work, based on an error measure which operates over all the
camera correspondences at the same time. The calibration
scheme is easy to implement for any number of cameras and
requires no user intervention after the initial data collection.
The past few years have seen some work in computer vision
conducted in a multi-view environment (for example, work
on image based rendering [12], multi-view structure from

motion [11], multi-view human motion capture systems and
multi-view virtualized reality [10]). In order for such tech-
niques and the ones that will follow to produce accurate re-
sults, an accurate calibration is required.

The basic method calculates the projection matrices for
all cameras to within a single perspective transformation.
An extension to the scheme calculates the full projection
matrices given additional input data, such as images of a line
segment (rod) of known length, or the image of a calibration
frame from two cameras.

This method is applicable to the calibration of large com-
plexes of linear projective cameras of varying internal and
external parameters. This method ensures that all the cam-
eras are calibrated as a single instrument so that methods
such as voxel carving and various algorithms in surveillance
and monitoringcan be implemented with maximal accuracy.

1.1. Contributions of the work and new ideas

The calibration procedure described here is a form of a
multiframe structure from motion algorithm based on point
correspondences, which are, by construction, of accuracy to
within a pixel. The technique itself has a number of nov-
elties as will become clear in the sequel, but there exist two
innovations that make the procedure very robust and of gen-
eral applicability. First, not all points need to be visible by
all cameras simultaneously. This makes it possible to cal-
ibrate camera networks of unrestricted topologies, such as
the following (Figures 1, 2 and 3). Figure 1 shows a map
(blue print) of the corridors of a building floor with clusters
of cameras placed at intervals along the walls. The tech-
nique described here can be used for calibrating this net-
work. Figure 2a shows cameras arranged on the walls of a
room and Figure 2b shows cameras arranged in a dome con-
figuration. Our technique can be used here. Finally, Figure 3
shows a network of cameras looking outwards and arranged
in some small volume of space. Our technique can be used



here as well, but we would need to have the system in Fig-
ure 3 surrounded by other cameras, for example, by putting
it in the room in Figure 2a or in the dome of Figure 2b. This
way, we acquire information about the relative location of
two cameras without a common field of view by relating
them to surrounding cameras. The second innovation of the
approach stems from a series of recent theoretical results in
structure from motion. It has been shown [2, 3] that when a
whole field of view (360 degrees) is available, the problem
of recovering 3D motion and structure does not have the am-
biguities and instabilities present in the case of a restricted
field of view. Thus, in calibrating a multi-camera network
we make sure that the collective field of view is such that
it spans the whole space surrounding the area of interest.
When, due to the topology of the network this is not possi-
ble, we use auxiliary cameras to achieve the full field effect.
For example, consider that you wish to calibrate a stereo sys-
tem. You could use three cameras (as in Figure 4) and per-
form the calibration procedure described here by waving a
light in the space between the cameras. The outcome will
be a robust calibration of the whole system and thus of the
stereo system as well.

Figure 1. Camera network in a hallway.

1.2. Previous work

Previous calibration work has concentrated on the cali-
bration of one camera with respect to a fixed reference cal-
ibration pattern, such as in [4]. One notable paper is [9]
in which they ask if an accurate calibration pattern is re-
ally necessary. They answer their question in the negative
through the use of at least three or more views from the same

(a)

(b)

Figure 2. (a) Camera network in a room. (b)
Dome-shaped camera network.

camera and simultaneous estimation of point location and
calibration. They are also not concerned with external, but
only internal calibration.

Calibration of three views has also been accomplished
through the use of trilinear constraints [6, 13, 15] or quadri-
linear constraints [6, 8, 15], but these tools are not well
suited to the problem of calibrating many cameras at the
same time. Spetsakis offers a solution in [14], but his al-
gorithm uses only calibrated cameras, and additionally does
not obtain the full projection matrices, even for calibrated
cameras.



Figure 3. A compound-like eye composed of
conventional video cameras.

Stereo system

Auxiliary cameras

Figure 4. Scheme to calibrate a stereo system.

2. A multi-camera laboratory

2.1. Motivation

The motivation for the work in this paper came with the
construction of several multi-camera laboratories all over
the world. For a laboratory like that, see Figure 5. There
are 64 cameras placed on the walls around the room. The
cameras can be moved and refocused, so that calibration is
needed with every data set. The cameras are synchronized,
so that each frame in all cameras is taken at precisely the
same time. It would be time consuming to locate the points
of a calibration grid for each of the 64 cameras every time
data is required. A calibration method with little to no user
intervention is required.

2.2. Input data

The fact that the cameras are synchronized and that the
lights can be turned off allows for many point correspon-
dences. A calibrator waves around a rod with an LED on
the end of it. The algorithm uses simple background sub-
traction and thresholding to extract the points. The corre-
spondences are then used in a large nonlinear eigenvalue
minimization routine, the basis of which is the epipolar con-
straint. The eigenvalue matrix encapsulates all the point cor-
respondences between every pair of cameras in a way that
minimizing the smallest eigenvalue results in the projection
matrices.

3. Mathematical preliminaries

3.1. Notation

All vectors are column vectors, and transpose is used
wherever necessary to keep the equations consistent. This is
especially important in using the technique presented here,
since many matrix morphology operators are used and a
convention avoids confusion.

An m � n matrix A is represented as row vectorsA = 26664aT1aT2...aTm37775
where each ai is an n vector. A may also be represented asA = 26664�1;1 �1;2 : : : �1;n�2;1 �2;2 : : : �2;n

...
...

. . .
...�m;1 �m;2 : : : �m;n37775

3.2. Projective model

Using the standard projective model, a world point Q
can be projected onto the image plane of an arbitrarily posi-
tioned unnormalized projective camera. Homogeneous co-
ordinates represent Q = [X Y Z 1]T and the projection
can be modeled with a 3� 4 matrix P which takes a homo-
geneous 3-vector Q and transforms it into a homogeneous
2-vector PQ = q = s [x y 1]T .P can be factored into the standard matrices K, R and T
by using the QR decomposition to obtainP = KR [I3 j T],
whereK is upper triangular,R is a rotation matrix, andT is
a 3-vector. Note that contrary to convention, the camera is
translated first then rotated. This is a necessary convention
for this algorithm to work. These form the standard transla-
tion, rotation, and projection matrices. In the sequel, K and



Figure 5. A panorama of a multi-camera laboratoryR separately will not concern us, and instead B = KR is
used.

Since the input to the algorithm is essentially a point
cloud with no metric information, it is only possible to ob-
tain calibration to within a 4 � 4 perspective projection H
(see Theorem 1 in [5]), wherePiH = P �i
Interestingly, ground control points are not needed in order
find thisH to within a conformal mapping. Only some sort
of metric information must be specified. This metric infor-
mation can be supplied by a wand with lights on both ends.
The constant distance between the lights will calibrate the
entire system to within a scale factor. If the distance between
the lights is measured, then the scale factor is specified as
well. This technique has the added benefit of being highly
redundant so that distances are equalized throughout the en-
tire camera field of view.

3.3. Morphology operators

Morphology operators which operate on 3 � 3 matrices
are necessary for the derivations. For any 3 � 3 matrix M ,
the stacking operator is defined as:[M ]s = 24m1m2m335

The stack of a transpose of a matrix is as follows:[MT ]s =266664�1;1�1;2�1;3�2;1�2;2�2;3�3;1�3;2�3;3377775 = 266641 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 0 0 1 0 00 1 0 0 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 0 0 1 00 0 1 0 0 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 137775�266664�1;1�2;1�3;1�1;2�2;2�3;2�1;3�2;3�3;3377775 = D[M]s
Two 3-vectors u and v can form [uvT ]s. Setting u0 =Au, where A is any 3 � 3 matrix, results in the following

identity:

[u0vT ]s =[AuvT ]s=[Au[v1 v2 v3]]s=24Auv1Auv2Auv335=24A 0 00 A 00 0 A35� 24uv1uv2uv335=[A]�[uvT ]s
where [�]� is defined here.

Deriving another identity with v0 = Av results in:uv0T ]s =D[v0uT ]s=D[A]�[vuT ]s=D[A]�D[uvT ]s=[A]�[uvT ]s
where [�]� = D[�]�D.

Given a vector v, the skew symmetric matrix associated
with it is defined as usual:[v]� = 24 0 �v3 v2v3 0 �v1�v2 v1 0 35

Finally, note that [[v]�]s = Kv
where K = 26666666666664 0 0 00 0 10 �1 00 0 �10 0 01 0 00 1 0�1 0 00 0 0 37777777777775
These results will be used later in the paper.



4. Projective multiframe calibration

4.1. Problem statement

The camera system projectsN 3D points, represented byR1;R2; : : : ;RN , onto M cameras, represented by projec-
tion matrices P1; P2; : : : ; PM . A given pointRi is not nec-
essarily projected onto camera j, but if it is, the projection
is ri;j = PjRi. If a particular pointRi does not project to
a camera j, then ri;j = [0 0 0]T for notational convenience.
The algorithm should output, given the points r, the matri-
ces Pj for all j. Since the camera system is calibrated using
the LED method, it is assumed that there are many accurate
point correspondences, so that minimality and robustness of
data is not a concern. What is a concern is using all of the
correspondences in an integrated minimization routine, so
that all of the cameras are calibrated at one time.

4.2. Solution framework

Given the set of points r�i;j in cameras j, the algo-
rithm searches for those matrices B�1j such that the ri;j =B�1j vecr�i;j are effectively formed in cameras which are
only translations apart from each other. That is, all cameras
have projection matrices of the form Pj = [I3 j Ti]. The
algorithm measures this with the epipolar constraint, assum-
ing that all the cameras are only translations apart from each
other. Thus the algorithm can be seen as putting all the cam-
eras into the translated copies of the same coordinate frame.

4.3. Normalized cameras

For the first derivation, it is assumed that all our cameras
have projection matrices of the form Pj = [I3 j Ti]. This
may seem to be an unnatural restriction, but the results will
be extended later to general projection matrices.

Every pair of cameras j and k is constrained to have the
sum of the squares of the epipolar constraint be zero. Sim-
plified by the lack of rotation assumption, this is:Xi (rTi;j[Tj �Tk]�ri;k)2 = 0
Setting A0j;k = Xi [ri;jrTi;k]s[ri;jrTi;k]Ts
the above is equivalent to:[[Tj � Tk]�]Ts A0j;k[[Ti � Tk]�]s = 0(Tj �Tk)TKTA0j;kK(Tj �Tk) = 0(Tj � Tk)TAj;k(Tj �Tk) = 0 (1)

where Aj;k = KTA0j;kK. Equation 1 just states that Tj �Tk is an eigenvector of Aj;k with zero eigenvalue.
This condition in equation 1 will not hold in the presence

of noisy data, but the least eigenvector (eigenvector associ-
ated with the least eigenvalue) of Aj;k should be the trans-
lation between cameras j and k.

This idea can be extended to be useful for many cameras.
Shown next is a technique for forming a matrix whose least
eigenvector T is the concatenation of all the camera posi-
tionsT = [TT1 TT2 : : :TTM�1]T , where it is assumed with-
out loss of generality thatTM = [0 0 0]T . To this end, formAi = 2666666664A1;1+i A2;2+i

. . . AM�i;M
. . . AM;i3777777775

which is a block diagonal matrix containing the 3�3 epipo-
lar constraints for all the cameras which are i indices apart,
and zeros elsewhere.

Given the 3M � 3M shift matrixSM = 2666664 0 I3 0 : : : 00 0 I3 : : : 0
...

. . .
...0 0 0 : : : I3I3 0 0 : : : 03777775Li;M is defined to be the left 3M � 3(M � 1) submatrix ofI3M �SiM . Li;M is constructed so that T is in the nullspace

of Ci = LTi AiLi
The null space of C = PiCi will be the intersection

of the null spaces of the Ci. The only vector in this inter-
section is T, if the cameras are in general position (no four
coplanar). The constraint thatC has one zero eigenvector is
a constraint on all the correspondences among all cameras.

4.4. Calibrating the cameras

The method to calibrate the cameras is to find those ma-
trices Bj , such that settingri;j = B�1j r�i;j
where the star denotes the originally measured points, re-
sults in the C matrix constructed from the Bj having an
eigenvalue close to zero. A nonlinear minimization over theBj will minimize the smallest eigenvalue of C.

By using the previously derived morphological identi-
ties, it can be shown there is no need to multiply all the



points to formA0j;k at every iteration. It is sufficient to mul-
tiply the A0j;k as follows.A0j;k =Pi[ri;jrTi;k ]s[ri;jrTi;k ]Ts=Pi[B�1j r�i;j(B�1k r�i;k)T ]s[B�1j r�i;j(B�1k r�i;k)T ]Ts= [B�1j ]�[B�1k ]� �Pi[r�i;jr�Ti;k ]s[r�i;jr�Ti;k ]Ts � [B�1k ]T� [B�1j ]T�= [B�1j ]�[B�1k ]�A0�j;k[B�1k ]T� [B�1j ]T�
thus obtainingAj;k = KTA0j;kK= KT [B�1j ]�[B�1k ]�A0�j;k[B�1k ]T� [B�1j ]T�K
The minimization can compute the smallest eigenvalue ofC
over all of the Bi’s using precomputed matrices A0�j;k.

4.5. Extracting the B matrices from the fundamen-
tal matrix

The nonlinear minimization must have initial conditions
reasonably close to optimal. Since it is not guaranteed that
correspondences exist between more than two cameras, the
only possibility is to use the fundamental matrices to some-
how extract an estimate of our Bi matrices. The FMatrix
program by Zhengyou Zhang [16] was used to generate
good fundamental matrices for input. Given that as input,
the following generates the Bi matrices.

This factorization of the fundamental matrix is sufficient
for our purposes. The fundamental matrix Fj;k is defined byrTi;kFj;kri;j � 0 for all i. This can be factored as:Fj;k = B�Tk [Tk � Tj]�B�1j
A single fundamental matrix is clearly not sufficient to ex-
tract any of theBj’s, but if it is only necessary to extract theBj’s to within a perspective transformation H, then all theBj’s can be obtained to within the same perspective trans-
formation using only fundamental matrices.

Since the B’s only to within a perspective projection are
necessary, it is necessary to fix 12 parameters (3 more are
fixed by setting TM = [0 0 0] and the last one is a scale
factor). Nine are fixed by setting B1 = I3, and the three
more parameters of B2 are fixed as follows. The fact thatB1 = I3 implies F1;2 = B�12 [T2 � T1]�. It is noted here
that the SVD of [T ]� is[T ]� = ��v2 v1 T� 241 0 00 1 00 0 03524v1Tv2TTT 35
with v1, v2, T mutually orthogonal. Now F1;2 can be de-
composed using the SVD as follows,F1;2 = U h�1 0 00 �2 00 0 0i�v1Tv2TTT �

= U h�1 0 00 �2 00 0 �3i��v2Tv1TTT ���v2 v1 T� h1 0 00 1 00 0 0i�v1Tv2TTT �= B2[T ]�
with�3 arbitrary, and definingB2. Thus setting�3 to a non-
zero value will give us a nonsingularB2 compatible with the
perspective projection chosen by setting B1 = I3.

Now given B1 and B2 which fix the perspective projec-
tion, the rest of the Bi, consistent with this perspective pro-
jection, can be found given F1;i and F2;i. DefineG0i = F1;iB1 = B�Ti [T1;i]� G00i = F2;iB2 = B�Ti [T2;i]�

Taking the SVD of G0i results in:G0i = U 24�1 0 00 �2 00 0 03524v1Tv2TTT 35
This result can be expanded as follows:B�Ti [T1;i]� =U h�1 0 00 �2 00 0 1i��v1Tv2T0 �+ ��TT�TTTT ����v2 v1 T� h1 0 00 1 00 0 0i�v1Tv2TTT �

Using the identity for [T ]� and taking the inverse transpose,
results in: Bi = U 24� 1�1 0 00 � 1�2 00 0 13524�vT2vT1wT 35
wherew is an unknown vector. RequiringBTi G00i to be skew
gives six linear conditions on w, which can be solved by
least squares to get Bi. The result is the B1, B2, and Bi,
which are all consistent with our three fundamental matri-
ces. All the Bi can thus be used as initial conditions in the
nonlinear minimization.

4.6. Obtaining the projection matrices

Note that the nonlinear minimization is actually carried
out on theBi. The Ti are extracted from the least eigenvec-
tor when the minimization is complete. The projection ma-
trices are then completed as:Pi = [Bi j Bi � Ti]
4.7. Algorithm overview

Input.M The number of camerasN The number of pointsr̂i;j The corresponding points with 1 � i � M and 1 �j � N .



Output. M projection matrices Pi
Steps.� Find the initial matrices Bi using Section 4.5� Using the B�1i as initial conditions, minimize the

smallest eigenvalue of C to obtain the optimal B�i andC�.� From C�, calculate the least eigenvector T �.� Using the B�i and T �, calculatePi = [B�i B�i T �i ] PM = [B�M 0]
5. Extensions

5.1. Full multiframe calibration

The execution of the algorithm described above results in
projection matrices Pi, which are related to the actual pro-
jection matrices P �i by P �i = PiH, where H is a 4� 4 ma-
trix. To find H, a wand with lights on both ends is used.

Using the Pi, world pointsRj;m with m 2 f1; 2g can be
reconstructed such that R�j = H�1Rj;m. Since the wand
does not change in length over the course of a data acquisi-
tion session, it is known that the distance between R�j;1 andR�j;2 is constant. Since the points are in homogeneous coor-
dinates, one can formulate the condition onH�1 as follows.�����H�11��3Rj;1H�14 Rj; 1 � H�11��3Rj;2H�14 Rj; 2 �����2 = 1
whereH�11��3 is the first three rows ofH�1 whileH�14 is the
last row of H�1. This condition can be used in a nonlinear
optimization in order to find H.

5.2. Self calibration

To self-calibrate using this framework, it is assumed that
there are correspondences from an uncalibrated camera with
an unknown motion in a rigid environment. More precisely,
this means that the B�1i can be decomposed as RTi K�1,
withK not dependent on i. The nonlinear minimization can
then operate over the 3M + 5 parameters defining the B�1i
rather than the 8M parameters which define the B�1i up to
scale.

One technical difficulty with this approach is that in or-
der to use an unconstrained minimization, the Ri must be
parameterized. Rodrigues parameters [1] are not appropri-
ate, because these parameters are infinite for half rotations.
More appropriate is Study’s Soma [1], which is a homoge-
neous form of the Rodrigues parameters. If the Rodrigues

parameters for a rotation R are d = [d1d2d3]T , then the
Soma parameters are g = s[1 dT ]T , with s a scale so thatg has length 1. Given unit g, [1] shows that R can be ex-
pressed asR ="g20 + g21 � g22 � g23 2(g1g2 � g0g3) 2(g1g3 + g0g2)2(g2g1 + g0g3) g20 � g21 + g22 � g23 2(g2g3 � g0g1)2(g3g1 � g0g2) 2(g3g2 + g0g1) g20 � g21 � g22 + g23#
6. Implementation details

This algorithm has been implemented in Matlab. Some
implementation details which improve the performance of
the algorithm follow.

6.1. Derivative of the C matrix

The B�1j which minimize the smallest eigenvalue of C
are what is desired. A nonlinear optimization over the ele-
ments of B�1j for this smallest eigenvalue will obtain these
parameters. To improve speed, it is possible to analytically
take the derivative of the smallest eigenvalue of the C ma-
trix with respect to each of the elements of the matricesB�1j .
One just expands the sum which defines C and takes the
derivative with respect to each matrix element in B�1j .

6.2. Preprocessing

It was shown in [7] that it is helpful in calibration to have
reasonable normalization for the image points. This algo-
rithm is no exception. While a projective calibration is ob-
tained, the stability of the algorithm is improved if a coarse
estimate Ke; j is made of the calibration matrix, for eachj 2 [1; : : : ;M ]. Then the algorithm operates on the r0i;j de-
fined by r0i;j = K�1ri;j
6.3. Postprocessing

After the projection matrices are obtained, the calibra-
tion can be improved by reconstructing the world points,
and then running a nonlinear optimization to obtain the pro-
jection matrices from the projections of the world points.
The accuracy of the initial calibration, together with its self-
consistency, allows the execution of this procedure.

7. Calibration results

The projective calibration algorithm has been imple-
mented in Matlab, and has been used to calibrate a multi-
camera configuration consisting of 64 cameras capable of



synchronized recording. A typical data set contains approx-
imately 2500 points, and each camera sees approximately
half of those. It would be surprising if this method were not
as accurate than a calibration frame, since it is possible to
accurately locate corresponding points in every part of the
cone of view of every camera. As long as the cones of view
of the cameras intersect, then there should be sufficient data
with which to calibrate.

In the experiments, it was determined that the reprojec-
tions of the reconstructed points were within a pixel, which
was the measurement error of the location of the LED.

8. Conclusion

It has been shown that it is possible to calibrate a large
system of cameras accurately with little user effort. This al-
gorithm will be useful to calibrate a variety of multi-camera
systems. In addition, as has been briefly explored here, the
framework also allows for work on full Euclidean and self-
calibration of a moving camera.
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