
Scalable Surveillance Software Architecture

Henry Detmold, Anthony Dick, Katrina Falkner,
David S. Munro and Anton van den Hengel

School of Computer Science
The University of Adelaide

{henry,ard,katrina,dave,anton}@cs.adelaide.edu.au

Ron Morrison

School of Computer Science
The University of St. Andrews

ron@cs.st-andrews.ac.uk

Abstract

Video surveillance is a key technology for enhanced pro-
tection of facilities such as airports and power stations from
various types of threat. Networks of thousands of IP-based
cameras are now possible, but current surveillance method-
ologies become increasingly ineffective as the number of
cameras grows. Constructing software that efficiently and
reliably deals with networks of this size is a distributed in-
formation processing problem as much as it is a video in-
terpretation challenge. This paper demonstrates a software
architecture approach to the construction of large scale
surveillance network software and explores the implications
for instantiating surveillance algorithms at such a scale. A
novel architecture for video surveillance is presented, and
its efficacy demonstrated through application to an impor-
tant class of surveillance algorithms.

1 Introduction

Video surveillance hardware has developed to the point
where the construction of networks of thousands of cam-
eras is now feasible. This is largely due to the availability
of IP cameras incorporating web servers, allowing footage
to be delivered across an IP network. Using IP permits cam-
eras to be connected to the closest point on a pre-existing IP
network, which offers significant reductions in deployment
costs when compared to analogue networks built specifi-
cally for video surveillance. At the hardware level, the scale
of video surveillance networks is limited only by the capac-
ity of the underlying network to transmit video footage.

The volume of video generated by large camera net-
works exceeds the capacity of current video surveillance
software for processing in a coordinated manner. Research
into surveillance algorithms is focused on methods capable
of utilising tens, rather than hundreds, of cameras. These
techniques, having been developed at small scale, typically
do not achieve scalability. For example, the complexity of

determining the relationships between the fields of view of
a group of cameras increases exponentially with the number
of cameras considered. Effective exploitation of the video
generated by a large surveillance camera network requires
new approaches designed with scalability as a primary con-
cern. Our ambition is to achieve the scalability required by
thousand camera networks.

The principal contributions of this paper are: i) a model
software architecture for the construction of large scale
video surveillance network software, ii) insight into the im-
plications for video surveillance algorithms to be deployed
on large scale networks and iii) demonstration of the effi-
cacy of our architecture through its application to an impor-
tant class of surveillance algorithms.

2 Architectural Requirements

With current camera technology, a thousand camera net-
works generates about 26 TB of data per day. As a result:

• The volume of data exceeds the processing capability
of even high-end single server systems. Consequently,
centralised processing as employed in current current
surveillance networks is inadequate and scalable dis-
tributed processing must be employed.

• Archiving the interesting subset (obtained through
techniques like decimation) of 26 terabytes of new data
per day is a storage challenge. With such data volumes,
using scalable distributed storage becomes essential.

• We do not expect thousand camera networks to ex-
ceed the bandwidth of individual network devices.
However, network capacity limits will eventually be
reached, so scalable network capacity is required.

• Any large surveillance network has a large number of
components, which fail independently. Surveillance
network software must be sufficiently fault tolerant to
maintain an acceptable level of availability, using re-
dundant components to work around failures.
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Scalability and availability are architectural properties of
the surveillance network software. If this architecture is im-
plicit, (as in most current surveillance systems), it is diffi-
cult for software developers to reason about such properties.
The need for high-level reasoning tools has led to the disci-
pline of software architecture [8, 12], which centres around
making the architecture explicit, through formalisation in
textual and graphical languages.

We adopt the controversial view that, at least in the short
and medium term, surveillance network software is not time
critical. This view derives from the whole-of-system level
observation that initiation of response to threats involves hu-
man intervention, and that typical times of such response
are of the order of five minutes. With this in mind, impos-
ing deadlines of the order of a few seconds on threat detec-
tion is of dubious worth. On the other had, we would admit
that our focus is on threat detection, rather than surveillance
network support for management of ongoing threats, which
does exhibit genuine time-critical aspects.

The prototype architecture we present in this paper is
based around a distributed instantiation of the blackboard
concept, which has been widely studied both in software
architectures [8] and in AI [11]. We demonstrate the effi-
cacy of our architecture, both in architectural terms and in
terms of applicability to a representative sample of current
and emerging video surveillance techniques.

3 Automated Video Surveillance

The most important property of the architecture in this
paper is its support for scalability. From this perspective,
the automated surveillance techniques in current use [3, 13,
16], can be divided into two classes:

• Signal processing approaches – inherently scalable,
typically because they apply to cameras in isolation.

• Distributed information processing approaches –
which require transformation to achieve scalability.

The signal processing class includes: i) object detection –
isolation of objects of interest within frames of footage, ii)
object classification – labelling objects according to type
(e.g. discriminating between people and cars), iii) object
tracking – tracking objects across time in video footage, and
iv) command, control and inspection – enabling human op-
erators to interact with cameras over the network [4]. Whilst
none of these are solved problems, current progress on them
is rapid, largely unimpeded by architectural issues.

The distributed information processing class is more
challenging from the architectural perspective. It includes:
i) determination and maintenance of the activity topology
of the network – the set of routes through which activity
of interest flows between cameras, ii) network-wide object

tracking – the extension of object tracking across multiple
cameras, iii) detection of anomalous behaviour – typically
through the application of rules describing behaviour of in-
terest, iv) archiving of footage, and v) forensic queries –
the efficient extraction of footage of interest in response to
instructions from human operators.

Determination of activity topology supports all the other
approaches in the distributed information processing class.
It determines camera adjacency for network-wide object
tracking. It enables meaningful association of footage from
multiple cameras for detection of anomalous behaviour.
The need to maintain accurate topological information in-
fluences the approach taken to archiving. Finally, topology
information is a pre-requisite for meaningful processing of
queries across time and space. Determination and mainte-
nance of activity topology is not inherently scalable; and
achieving scalability is thus a key test of the architecture.

Activity topology can be determined and maintained
manually, but for large networks this is laborious and error-
prone. Instead, activity topology can be gradually inferred
by monitoring movement through the network over a period
of time. For example, Ellis et al. [6] observe motion over a
long period of time and accumulate occupancy information
in a histogram. This approach has been extended by Stauf-
fer [14] and Tieu [15] to use a more rigorous definition of a
transition between cameras based on statistical significance.
These methods have only been demonstrated on networks
of less than 10 cameras, and it is not clear how they would
scale up by an order of magnitude. On a larger scale, Brand
et al. [1] consider the problem of locating hundreds of cam-
eras distributed about an urban landscape. Their method re-
lies on having accurate internal calibration and orientation
information for each camera, and enough cameras viewing
common features to constrain the solution.

Section 5 describes a method for automated topology ac-
quisition that has been adapted to the distributed architec-
ture, and thereby scales to camera networks that are orders
of magnitude larger than those to which it has been previ-
ously applied. The development of this automated topology
acquisition method leads on to a distributed tracking algo-
rithm, supported by the topology information.

4 A Surveillance Software Architecture

Our approach is based around the use of the blackboard
architectural style and specification of three architectural
views of a system: functional, physical and interaction. The
functional view defines the functional requirements (includ-
ing the vision algorithms used for automated surveillance),
major system component types and the mapping between
them. The physical view defines the hardware on which the
system operates. The interaction view defines communica-
tion and coordination between the components identified in
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Requirement Mapping
Object detection, classification
and single-camera tracking

Computation within surveillance zones based on background subtraction and tracking
with a Kalman/particle filter, providing inputs into the blackboard,

Activity topology determina-
tion and maintenance

Distributed computation within the blackboard to correlate disappearances and appear-
ances.

Tracking activity across the
network

Distributed computation within the blackboard, using appearance and activity topology
information and inputs injected by the surveillance zones.

Rules based behaviour detec-
tion

Distributed computation within the blackboard, based on rules/goals injected by com-
mand centre(s).

Command, control and inspec-
tion

Direction of surveillance zones through goals injected into the blackboard by control
centres; virtual circuits established to stream desired video.

Archiving Data hoarders copy video footage and derived results from the blackboard. Data
hoarders manage storage, through decimation of old footage, for example.

Forensic queries Control centres query data hoarders via injection of goals into the blackboard; virtual
circuits established to stream results.

Table 1. Functional View of the Architecture

the functional view. Here we define the three views, then
discuss the key component in our architecture, the black-
board and how that component is distributed.

IP Network with 
Redundant Routes

Control Centre(s)

…
Compute

Cameras

Physically 
Exposed 
Surveillance
Zones

Physically Secure Data Centres

Compute

Storage

…

Figure 1. Physical View of the Architecture.

4.1 Functional View

The components in the architecture are surveillance
zones, data hoarders, control centres and the blackboard.
The blackboard supports both distributed processing of
surveillance algorithms and interaction between the other
components. Surveillance zones are groups of cameras to-
gether with computational capacity; these feed video data
into the blackboard. Data hoarders are responsible for ob-
taining and preserving both historical footage and derived
results, and for serving queries on this data. Finally, control
centre components provide a human interface for inspection

and control of the network. Table 1 shows the mapping of
major functional requirements to these components.

4.2 Physical View

Figure 1 shows the physical view of our surveillance net-
work architecture. Surveillance networks typically protect
high value facilities, and as such have access both to high-
capacity TCP/IP network infrastructure and to computation
and storage within dedicated data centres.

4.3 Interaction View

Interaction between components in the architecture is
principally via the blackboard; Figure 2 shows this interac-
tion. As shown in Figure 3, the blackboard is organised as
a number of interacting levels, with lower levels providing
results to be used by higher levels and higher levels provid-
ing goals guiding the operation of lower levels. The detec-
tion level applies processes like background subtraction to
raw video and derives hypotheses about activity. The sin-
gle scene analysis level derives hypotheses like “left lug-
gage” from activity and detection of particular objects via
signatures. The multi scene analysis level derives hypothe-
ses concerning network topologies and tracking people on
paths. The reasoning level derives hypotheses related to
“suspicious behaviour” etc. The blackboard does not meet
the strict timeliness constraints needed for video streaming,
so virtual circuits are exposed from the underlying network
to allow direct communication in such cases.

Each level of the blackboard has essentially the same in-
ternal structure. One or more input drivers processes the
inputs and adds them to the level’s information base. In the
the lowest level, the inputs come from cameras, whereas
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for higher levels, the inputs are from lower levels. Each
level has a controller, which is responsible for monitoring
the information base and selecting and activating rules from
the rule base when data in the information base satisfies
constraints for the rules. The rules encapsulate the surveil-
lance techniques in the architecture, and can encode arbi-
trarily sophisticated algorithms. The application of these
rules leads to the derivation of new results (hypotheses) by
forward chaining; these are then are added to the informa-
tion base. At higher layers, rules can also issue directions
(goals) to the controller of the layer below, causing the con-
troller to perform backward chaining to attempt to satisfy
the goals. Finally, each level has one or more significance
filters which determine which of the data in the information
base is propagated as inputs to the layer above.

Distributed
Weakly Consistent

BlackBoard                               

…
Surveillance
Zones

Edge Compute

Cameras

Data Hoarders

…

…

Compute

Storage

Control Centre(s)

Archiving
Camera
Control

Video
Input

Virtual circuits exposed for 
video streaming

ThreatsDirection

Figure 2. Interaction View of the Architecture.
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Rule Base

Rule Invocation Rule Selection

Rule
Application

Input Drivers

Controller

Goal Insertion
Result 
Reporting

Input 
Insertion

Figure 3. The Blackboard Component.

4.4 Distribution and Scalability

Figure 4 shows how the blackboard is distributed. In
the vertical dimension, different levels of the blackboard are
placed on different processing nodes (i.e. the system is par-
titioned according to level). At the detection and analysis

levels, the blackboard is horizontally partitioned by surveil-
lance zones (groups of cameras): each zone has associated
processing partitions containing blackboards for detection
and both types of analysis. Finally, the blackboard at the
reasoning level is partitioned so that each partition is asso-
ciated with a group of neighbouring zones.

Reasoning Level

Analysis Level

Detection Level

Dissemination Dissemination

Dissemination

Video from Cameras

Detected Activity
Detection Goals

Detected Behaviour
Analysis Goals

System Goals

Dissemination

Detected Threats

Figure 4. Distribution of the Blackboard.

Communication between the nodes has three forms:

• Reporting – Each node has a small set of superior
nodes within an hierarchical structure. Each node re-
ports results it has derived from its input data to its su-
periors, with reporting prioritised by significance. For
example: detection nodes report objects identified by
background subtraction to analysis nodes. In the case
of reasoning level nodes, the superiors are human op-
erators in a control centre. The use of multiple superior
nodes provides fault tolerance in respect of the loss of
any particular node, and thus availability.

• Direction – Each node at the reasoning and analysis
levels has several subordinates to which it can issue
directions. For example, when a reasoning node has
detected a person moving along a path, it may send
its subordinates a signature for that person and instruc-
tions to track him or her.

• Dissemination – Nodes within a level share their sig-
nificant results with a small set of peers at the same
level. As nodes derive results, they pro-actively share
results that exceed a significance threshold with their
peers. Also, nodes may send goals to query their peers
for results in which they have an interest. Dissemina-
tion replicates the significant information in the black-
board, enabling redundancy of processing, thereby
providing fault tolerance and improving availability.

There are no guarantees about consistency of shared infor-
mation. Instead, dissemination provides a weakened con-
sistency model where highly significant information prop-
agates quickly (and will thus be reasonably consistent). In
contrast, information deemed to have little significance may
never leave its originating node.

The scalability of the architecture is founded on two hy-
potheses about surveillance network data, derived from ob-
servations made in our previous (six camera scale) work [5].
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First, significant information within a local group of cam-
eras (i.e. a surveillance zone) grows at a slower rate than
the number of cameras. Second, most data produced in a
zone is only relevant within that zone.

These hypotheses inform both the engineering and the
science in our work. The engineering assumes the hypothe-
ses as a basis, and the distributed blackboard has thus been
formulated to exploit locality whilst supporting distribution
of significant data. Part of the science in our work is to
test the hypotheses on thousand camera networks; detailed
empirical study of network performance will be needed for
such testing, and we expect this study also to reveal unan-
ticipated emergent effects. A future test of the long-term ef-
fectiveness of the architectures will be how well it supports
architectural evolution [9] to respond to emergent effects.

5 Applying the Architecture

We now show how the architecture enables large scale
distribution of a technique for automated topology acqui-
sition and tracking described in [5]. This technique uses a
hidden Markov model (HMM) to learn the activity topology
of the camera network and to inform subsequent tracking.
The HMM operates over N discrete states corresponding to
regions in cameras’ fields of view. The current state of the
HMM is determined by the position in space of the person
being tracked. The HMM comprises an N × N transition
matrix A and an N dimensional initial state vector b. The
initial state vector contains one entry for each state, reflect-
ing the probability that a person appears for the first time in
that region in space. The transition matrix has a row and a
column for each state, with the matrix entry Aij giving the
probability that a person moves from state i to state j. A
separate HMM tracks each person under surveillance.

The original algorithm operates in distinct learning and
tracking stages. During learning the movement of a single
person is tracked through the network of cameras. The point
at which this person enters the network results in an update
to the b vector, and that person’s subsequent movement is
used to update the A matrix. During tracking, the matrix
and vector are combined with appearance information to
track people as they move within and between regions.

The distributed blackboard architecture enables solu-
tions to a number of problems identified in testing of the
original system. Specifically: i) the original implementa-
tion used a single PC for processing did not scale beyond
six cameras due to limitations in bandwidth and process-
ing capacity; ii) the transition matrix in the original algo-
rithm increases as the square of the number of regions under
surveillance. This is impractical for a thousand camera net-
work, which with twelve regions per camera would require
144 million matrix entries!

In the architecture, cameras are grouped into surveil-

lance zones, with which are associated processing elements
in the form of detection and analysis blackboards. The tran-
sition matrix and vector for a given zone are maintained in
that zone’s multi-scene analysis blackboard. Since zones
contain only a limited number of cameras (up to ten), the
size of the matrix is manageable (less than 15,000 entries
with twelve regions per camera). Further, tracking within
the zone is localised (using the pre-existing algorithm) and
thus tracking proceeds in all zones in parallel. In addition
to the appearance vector and transition matrix, each zone
maintains a disappearance vector, d, giving the probability
that a person is last seen within the zone in a given region.

Elements of d having high probabilities identify the cor-
responding region as a likely exit, whereas high b values
identify likely entries into the zone. Objects arriving at en-
tries and leaving from exits are reported to the reasoning
level of the blackboard. The reasoning level matches an
exit from some zone Z1 with an entry into another zone
Z2, and concludes that the two zones must be adjacent in
some fashion. It then directs zone (Z2 to create an immigra-
tion matrix I(Z1,Z2). The rows of I(Z1,Z2) are exit regions
of Z1, whereas the columns are entry regions of Z2. The
value I(Z1,Z2)

ij gives the probability that a person leaving
zone Z1 at region i will enter Z2 at region j, assuming that
the person enters Z2 rather than some other zone. When
tracking in zone Z1 detects a person leaving (no longer seen
after a period of time), it disseminates that fact to its peers.
Each peer then uses the its immigration matrix for Z1 to
attempt to continue tracking the person.

6 Related Work

Caflisch et.al. [2] propose an architecture-centred ap-
proach to the development and maintenance of surveillance
systems. We agree with the philosophy of their approach,
but go deeper into the architecture as it applies to the sys-
tem’s desired properties (in particular, scalability). We also
follow mainstream thinking in the software architectures
discipline, in that we re-use and adapt an established archi-
tecture (the blackboard), whereas their architecture is cre-
ated de novo. They provide a useful industrial perspective
on the construction of surveillance systems, which moti-
vates them to discuss software life cycle requirements such
as configuration, portability and ease of extension. We
avoid discussing these requirements in this paper, but ad-
dress them in our ongoing work, and note that, as was their
experience, the architecture provides key ingredients in the
satisfaction of these requirements.

The principal contribution of Enficiaud et.al. [7] is the
adoption of a service oriented architecture. Via this archi-
tecture’s loose coupling of modules, multiple vision appli-
cations can be developed independently and subsequently
integrated. The efficacy of this approach is demonstrated
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through its application to develop and integrate three vi-
sion applications. Whilst we have not investigated capacity
for independent development directly, it is highly likely that
the loosely coupled nature of the distributed blackboard will
also promote such development processes.

Yuan et.al. [17] present a distributed vision-based
surveillance system. Their system has a single centralised
server (a potential bottleneck), but that server is able to
“farm out” intensive computations to PCs on a LAN,
thus providing some distributed processing. Interestingly,
this work is formulated in terms of hypothesis generation
and hypothesis verification, which accords well with the
blackboard-based approach. However this work lacks an
overarching software architecture; this would enable, for
example, replacement of the central server with decen-
tralised distributed processing.

Work such as Lim et.al. [10], like some of our own prior
work [5], concentrates on the development of algorithms
to exploit multiple cameras (typically about six) with cen-
tralised processing (a single server). This work has in-
formed the construction of surveillance zones within our
approach, but does not in and of itself scale to the thousand
camera networks we envisage.

Finally, we adopt a blackboard approach rather than the
more modern multi-agent approach. Our conservatism is
based on the belief that the volume of data to be managed
requires purpose specific handling (i.e. the blackboard) that
generic agents would struggle to replicate. Use of a multi-
agent approach would be an interesting future experiment.

7 Conclusion

This paper presents a software architecture which pro-
vides video surveillance network software with the scala-
bility to support sophisticated analysis on thousand camera
networks, and enables it to employ sufficient fault tolerance
to achieve availability in a system consisting of thousands
of devices. The efficacy of this architecture is demonstrated
through its application to provide scalability and availability
for an important class of surveillance approaches. Our work
is not limited to scalability and availability: current and fu-
ture work uses the architecture to provide evolvability, the
capacity of the network to change through the addition and
modification of both hardware and software components,
whilst its surveillance function remains operational.
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