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Abstract

A framework is proposed that answers the following ques-
tion: if a moving object is observed by one camera in a
pan-tilt-zoom (PTZ) camera network, what other camera(s)
might be foveated on that object within a predefined time
window, and what would be the corresponding PTZ param-
eter settings? No calibration is assumed, and there are no
restrictions on camera placement or initial parameter set-
tings. The framework accrues a predictive model over time.
To start out, the cameras follow randomized “tours” in dis-
cretized PTZ space. If a moving object is detected in the
field of view of more than one camera at a particular in-
stant or within a predefined time window, then the model is
updated to record the cameras’ associations and the corre-
sponding parameter settings. As more and more moving ob-
jects are observed, the model adapts and the most frequent
associations are discovered. The formulation also allows
for verification of its predictions, and reinforces its correct
predictions. The system is demonstrated in observing peo-
ple in an office environment with a three PTZ camera net-
work.

1. Introduction
In a typical surveillance application involving a camera net-
work an important task that researchers face is selecting
cameras and their parameter settings to accomplish a spe-
cific set of objectives. Given that a person is seen from
some camera, three important questions effecting the choice
of camera parameters become,

• Which camera(s) to foveate?

• Where to foveate?

• When to foveate?

to see the person in the near future. The overall success
and complexity of the system in these cases is tightly cou-
pled to three types of information. Intrinsic and extrinsic
calibration information of the camera network (where the
cameras are located and how do they relate the scene to the

image plane), model of the environment (what is the ge-
ometry of the environment) and the motion dynamic of the
models (how and where do people tend to move).

If we had full extrinsic and intrinsic camera network cal-
ibration information, a very detailed model of the environ-
ment, a perfect tracker and a flawless dynamical model of
moving people then answering the previously posed ques-
tions would be a relatively easy task. Unfortunately this
usually is not the case. The trackers do not work reliably
enough. They are usually sensitive to initialization and to
several sources of errors and occlusion ambiguities. The
environment is not static. Furniture may be relocated, light-
ing conditions and natural elements change. The dynamical
models of moving people are often approximate. People’s
movements are not completely predictable.

Furthermore even if we assume the availability of per-
fect extrinsic and intrinsic calibration information for the
camera network, this calibration information’s reliability
decreases over time. This is especially true in an active
camera setup, where the calibration parameters may deviate
from the given ones due to mechanical and environmental
issues. This in turn would require periodic re-calibration
of the system, which in a large multi-camera network is a
daunting task.

In this paper we propose a PTZ camera network system
which is capable of computing a list of cameras to allocate
for a time in the near future given the current observation(s)
from some camera view. We strive to constrain the system
with as little assumptions as possible, i.e. no camera cal-
ibration information, no restrictions on where the cameras
are placed nor on their initial parameters, no information
about the environment and the dynamic model of moving
people. One of the main difficulties introduced by the in-
clusion of active cameras is dealt with discretizating the
problem. The system is capable of encapsulating the un-
derlying target traffic patterns in specially constructed data
structures which in turn are used to create camera allocation
strategies. Currently we exclude scheduling and control is-
sues since the main target of this work is to find the actual
camera allocations, not how to implement them.
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1.1. Related Work

A considerable amount of work can be found for camera
network calibration problem. Svoboda, et al. [1] introduce
a full system to recover calibration parameters of a fixed
camera network using a laser pointer. Baker, et al. [2] at-
tack the same problem using a calibration widget, where as
Barreto, et al. [3] use structured lighting to also recover the
radial distortion with cameras having wide field of views.
Note that these approaches use special artificial widgets (a
calibration object, laser pointer or structured lights) with
tightly synchronized cameras. In contrast, Rahimi, et al.
[4] use the actual traffic observations to accomplish the ex-
trinsic calibration of the cameras. However their method
allow only a single moving object in the environment at any
given time. Lee, et al. [5] also recover extrinsic calibration
parameters of a fixed camera network using tracking infor-
mation gathered over time. They use a planar model where
it is assumed that the individual intrinsic camera calibration
parameters are known. It is worth noting that none of the
cited work deal with the calibration of a network of active
cameras.

There is also work on camera handoff, i.e, finding the
next camera to see the target object once it leaves the field
of view of the current camera. Khan, et al. [7] recover
relative camera calibration by finding pairwise overlapping
field of view borders using target observations over time and
use this information to label targets across different cam-
eras. Their strongest assumption is the existence of over-
lapping field of views. Javed, et al. [8] instead assume
disjoint views and establish across-camera object labeling
in a probabilistic way. They also assume the single cam-
era tracking problem is already solved. Kettnaker, et al. [9]
use a similar approach with similar assumptions. All these
works assume immediate target handoff across camera field
of views where as in the presented work time is a parameter
for the handoff function.

In the field of robotics and control, Hutchinson, et al.
[10] provide a very nice tutorial on visual servo control pre-
senting and analyzing different strategies. Stewart, et al.
[11] compare different scheduling algorithms for a sensor
network. In a recent work, Costello, et al. [12] present
scheduling strategies for motion tracking from a single PTZ
camera. Miura, et al. [14] propose a multi-camera target
assignment and planning system which allows multiple tar-
gets at any given time but requires a strong camera calibra-
tion and precise geometrical information for the environ-
ment.

In this paper we contribute to the field by addressing
the following issues simultaneously which limit most of the
cited work:

• No a priori information about the location and intrinsic
calibration of the cameras is needed.

• There is no high-level information like tracking, data
association or labeling but only low-level image fore-
ground information allowing use of low-resolution
cameras.

• The system can handle multiple targets, which is a re-
alistic and relaxed assumption for a real-time system.

• The system uses active cameras which introduce addi-
tional camera control parameters.

The rest of the paper is organized as follows: In the next
section the formal problem definition is given. Section 3
presents individual components of the system including the
delayed co-occurrence matrix which is the core for the pre-
diction. In Section 4 we give the results of experiments per-
formed together with their respective implementation de-
tails. Finally a short discussion and potential extensions to
the proposed system are given in Section 5.

2. Problem Definition
We will use italic boldface to show row vectors, italic low-
ercase to show scalars and ITALIC UPPERCASE to show
sets. Let CN = {c1, . . . , cn} be the camera network com-
posed of n active cameras. Let ci, i = 1 . . . n denote the ith

camera in the network. Each camera has a corresponding
parameter vector denoted by pi = [θi, φi, ζi] where θ is the
pan, φ is the tilt and ζ is the zoom parameter. Whenever the
need arises, we will show the particular time instance of a
variable with superscript t, i.e. pt

i will show the parameter
set of camera i at time t. Now define the configuration of
CN as, C = {p1, . . . , pn} . We want to answer the follow-
ing question:

“If a moving object is observed by a camera ci with pt
i,

in a PTZ camera network CN , which other camera(s) ck,
k ∈ K ⊂ {1, . . . , n} could be foveated to observe motion
within a predefined time window Δt, and what would be
the corresponding PTZ parameter settings p(t+Δt)

k ?”.
In mathematical terms we want a multi-valued function

f : Z+ 	→ 2CN × 2C such that,

fΔt(i) = {A ∈ 2CN , B ∈ 2CΔt} (1)

where i is the camera index where motion is observed, Δt
is the time delay and 2X denotes the power set of X .

The shape of function fΔt depends on the traffic pat-
terns exhibited by moving objects in the union of the field of
views of CN . If the analytic solutions of the traffic pattern
trajectories and full camera network calibration information
were available, it would be possible to derive fΔt and per-
fectly predict which cameras to foveate when and where to
see the object in motion assuming it is strictly obeying a
given dynamic model. This scenario is, of course, a very
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trivial one and unfortunately it is not realistic to expect this
nice behavior from a real life environment.

We will attack the problem by approximating the func-
tion fΔt. We will keep records of the observations ob-
tained over time and establish camera relationships exploit-
ing the pairwise observation frequencies for different time
windows assuming no knowledge about the camera extrin-
sic 1 and intrinsic parameters. We will also do this in a
feed-back fashion such that the system will be able to up-
date the approximation to fΔt using the recent history hence
adapting to changes in the environment without external in-
tervention.

3. Approach
The main idea is to make camera assignment predictions
using an approximation of fΔt evolving over time. This ap-
proximation is computed using observations gathered over
a sliding time window, establishing pairwise temporal asso-
ciations among cameras. The approximation of fΔt is actu-
ally done by using delayed co-occurrence matrices. Be-
fore going further into the definition of the delayed co-
occurrence matrices, we need to define the sampling of the
PTZ parameter space for each camera.

3.1. Sampling of PTZ parameter space
The first step of the algorithm is to sample over the param-
eter space of each camera and use these sample points as
stations for the rest of the algorithm. Note that this step is
performed only once.

A station sij , i = 1, . . . , n, j = 1, . . . , si is a prede-
fined parameter point pi for camera i where si is the number
of stations. A lexicographically ordered set of stations con-
stitutes a tour Ti = {[i, sij ]}, j = 1, . . . , si. Since no other
information about the camera location is given, in order to
increase the union of field of views (from now on denoted
by FOVi) of Ti, we favor a uniform sampling over θ, φ and
ζ while keeping at a minimum level the pairwise field of
view overlaps for the same camera. Note that depending
on the actual placement of individual cameras, some of the
stations may correspond to orientations with little or no in-
formation at all, like facing an obstruction. Nevertheless
there is no way of knowing this before running the system
and analyzing the collected data. Now we can define the
delayed co-occurrence matrix which is the core of the algo-
rithm.

3.2. Delayed Co-occurrence Matrix
Let HΔt denote a square matrix where Δt denotes the time
delay. The row and column indices of the HΔt are defined

1Except its pan, tilt, zoom parameters, provided by the PTZ control
system.

as the indices to the set Z = {T1|T2| . . . |Tn} where | is the
concatenation operator. Using this construction, the entries
of HΔt will reflect the delayed temporal relations among
the cameras. For instance, the entry HΔt(k, l) will contain
the total number of events seen so far at Z(k), Δt time units
after seing an event at Z(l). Note that due to the way HΔt

is constructed, sparse matrix methods can be used. We call
HΔt the delayed co-occurrence matrix. How the HΔt is
populated and updated is the topic of the following subsec-
tions.

Function ConsumeRequestQueue(J)
input: Request queue.
begin

while J �= ∅ do
request ← pop (J);
requestStation ← request(1);
requestT ime ← request(2);
stationsToGo ←
|requestStation − currentStation|;
timeToGo ←
stationsToGo × travelT imePerStation;
arrivalT ime ← currentT ime + timeToGo;
if requestT ime ≥ arrivalT ime then

sleepUntil (requestT ime);
checkForMotion ();

end

3.3. Verification of the Current Prediction

The scope of this step is to validate predictions made for
the current point in time and use this information to keep a
record of the number of successful predictions for a specific
Z(l). Each camera has an associated request priority queue
J containing requests defined as the predicted station sij

and associated predicted time tnow + Δt. Whenever a pre-
diction for a camera ci is made, the corresponding request is
pushed into the queue Ji which is sorted in increasing order
of the request times.

If J is non-empty then the top request is popped and
checked for feasibility which answers the following ques-
tion:“Can the camera reach the predicted station given
its current station, the prediction time delay Δt and its
servo speed ?”. If the answer is “yes” then the camera is
sent to the predicted station and becomes committed un-
til the request’s time arrives. A pseudo-code is supplied in
ConsumeRequestQueue.

Even if this approach is a trivial way of handling re-
quests, it is still sufficient enough to produce empirical per-
formance values for the proposed prediction algorithm.
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3.4. Observation
If the camera is not committed then it is set to go through a
random sequence of its respective tour, Ti. Intuitively this
corresponds to sampling randomly through FOVi. The idea
here is to collect motion information through Ti with min-
imum bias. At each station during the random tour, each
camera grabs a sequence of image frames and checks for
motion. If there exists significant motion then this informa-
tion is propagated to the next step in the algorithm. Motion
estimation and measure of significant motion are applica-
tion specific. One example is described in Section 4.

3.5. Update
In order to explain how the HΔt is updated, we need to
introduce temporal sliding windows. Let Qk be a queue
associated with the entry Z(k) such that q ∈ Qk ∧ q ∈
Z+. Suppose the observation step reports motion from
camera i at station Ti(j). Let Z(k) = Ti(j). Then
the current time-stamp tnow is pushed into the queue Qk.
Since the time-stamp is non-decreasing, Qk is also non-
decreasing by definition. In order to make the Qk be a slid-
ing window with a window size equal to Δtmax, which is
the farthest prediction interval requested, we prune all en-
tries q ∈ Qk : (tnow − q) > Δtmax at each iteration.
From now on we will refer to Qk as temporal sliding win-
dow. The pseudo-code for the update function is given in
UpdateDelayedCoOccurrenceMatrix. Example HΔts are

Function UpdateDelayedCoOccurrenceMatrix(k)
input: Index to Z where motion is observed.
begin

for l ← 1 to |Z| do
while (tnow − q) > Δtmax do

q ← pop (Ql);

forall q ∈ Ql do
Δt ← tnow − q;
HΔt(k, l) ← HΔt(k, l) + 1;

end

given in Fig. 3. Note that separate HΔts are necessary to
enable the corresponding Δt delay prediction. We can now
compute the conditional probability PΔt(zl|zk) for a given
Δt,

PΔt(zl|zk) =
HΔt(k, l)∑l=|Z|

l=1 HΔt(k, l)
(2)

where zk is a binary random variable which is equal to 1 if
motion is detected at Z(k) and vice-versa. Now define the
allocation probability matrix ΠΔt for Δt as,

ΠΔt(k, l) = PΔt(zl|zk) (3)

The allocation probability matrix ΠΔt provides a nice prob-
abilistic basis and understanding for the rest of the algo-
rithm.

3.6. Prediction
If at time tnow some significant motion is detected at Z(k),
then the prediction is made by using the Golden Rule of
Sampling [15] or CDF inversion sampling method over
the kth row of ΠΔt, since the rows of ΠΔt represent ap-
proximate discrete probability distribution of detecting mo-
tion in Δt time over Z. The sampling is performed by
first computing the CDF, F , of ΠΔt(k, ·) and dividing
the [0,1] interval into |Z| segments with lengths equal to
ΠΔt(k, l), l = 1, · · · , |Z|. A uniformly distributed random
number r ∈ [0, 1] is then generated. The Z(l) correspond-
ing to,

F (l) < r < F (l + 1)

is then selected as the predicted camera and its respective
station.

The theoretical justification behind the choice of this
sampling approach is that it will favor selection of a cam-
era and its corresponding station with a chance propor-
tional to its current allocation probability. Nevertheless the
choice of the approach is application dependent. For in-
stance, for a surveillance application CDF inversion sam-
pling will decrease a potential intruder’s chances to evade
detection by simply observing the system for some time
with the introduction of randomness into the camera pre-
diction step. On the other hand, for an application aimed
solely to face recognition the preferred way may be to pick
the camera with the highest allocation probability to maxi-
mize the chances of observing a person.

4. Experiments
The experimental setup consists of a PTZ IP camera net-
work with three cameras attached to ceiling tiles and placed
in a university lab area, e.g. Fig. 1. The network is con-
nected to a single PC. The algorithm is implemented using
C++. Frames grabbed are 176x120 RGB images. Framerate
is 15 fps. The system is fully real-time. The blob detection

Table 1: Prediction accuracy for the experiment. Success
is defined as an allocation request finalizing with motion
detection.

CAMERAS Σ REQUEST SUCCESS RATE

1 137 %12
2 375 %36
3 373 %41

is performed by using a single Gaussian background model
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[16]. The number of blobs, their areas and moments are
found using morphology and connected components analy-
sis. Only blobs with areas above a given threshold propor-
tional to the image size (in this case 2 percent of the total
number of pixels in the image), are considered as significant
motion. No other high level analysis, e.g. tracking, label-
ing, is performed. Δtmax is set to be six seconds. Each
camera has five stations with pan parameters covering uni-
formly [0, 180◦] interval with 45◦ increments as shown in
Fig. 1. The tilt parameter is set to −20◦. The zoom factor
is set to ×1. Servo travel time in between adjacent stations
is 1 second.

The experiment is performed from 16:00 pm to 18:00 pm
with several (∼ 8) students working in the area and several
others going to-from offices and the lounge area creating
traffic. The complete set of delayed co-occurrence matrices
are given in Fig. 3. An intuitive explanation for the peaks
on the diagonals of delayed co-occurrence matrices is the
existence of students discussing with each other, creating
significant motion around the same place over time. Most
of the peaks seen in Fig. 3 agree with the high activity loca-
tions of the environment as expected. Furthermore a close
observation of delayed co-occurrence matrix corresponding
to Δt = 0 show that the peaks seen highly correlate with
the overlapping FOVs of the cameras. We believe this in-
formation can be used for estimating the topology of the
camera network. The performance results are given in Ta-
ble 1 where success is achieved when a prediction request is
finalized by a motion detection, e.g. Fig. 2. The relatively
low success rates can be attributed to motion bursts gen-
erated by stationary people (students working in the area)
which trigger the system to allocate cameras. Such requests
in turn fail to detect motion since their triggering motion is
stationary, not an actual traffic.

5. Conclusion
In this work we presented a real-time PTZ camera network
system capable of generating camera allocations and their

Figure 1: Illustration of the experiment area. The arrows
point towards station pan orientations with corresponding
indices.

Figure 2: A couple of sample frames from successful re-
quests. Faces are blurred for anonymity.

respective parameters for detecting motion in a near fu-
ture given that motion is detected from some camera. We
assume no camera calibration information, no information
about the environment and no knowledge about the dynami-
cal model of motion. The system gains the prediction power
by constructing and updating delayed co-occurrence matri-
ces over time using motion observations.

The method is tested in a difficult real-time environment
and preliminary results are also presented. It is important
to note that even though the method was demonstrated on
predicting associations between cameras seeing motion in
their FOV within some time interval, this does not guaran-
tee that the cameras actually see the same moving object.
In our preliminary study, though, we found that the predic-
tions tend to be for the same moving object. Nonetheless, it
is possible to add additional constraints in building and ver-
ifying the delayed co-occurrence matrix that would further
increase the likelihood of observing the same object that
was observed in another FOV Δt time units ago. For in-
stance, it is possible to use the color histograms of detected
motion blobs to constraint the temporal association among
the cameras.

Moreover the predictions generated by the proposed sys-
tem can also be used as input to clever scheduling of the
cameras [11, 12]. A scheduling system could use the pre-
diction information together with additional info (i.e. servo
timing, delays, access control etc.) and optimize some cost
function, e.g. maximize resource utilization, minimize time
conflict. Such extensions of the framework are under cur-
rent investigation.
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Figure 3: Delayed co-occurrence matrices for different Δts. Color scaling differs for each graph.
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