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Abstract

Estimating the paths that moving objects can take
through the fields of view of possibly non-overlapping cam-
eras, also known as their activity topology, is an important
step in the effective interpretation of surveillance video. Ex-
isting approaches to this problem involve tracking moving
objects within cameras, and then attempting to link tracks
across views. In contrast we propose an approach which
begins by assuming all camera views are potentially linked,
and successively eliminates camera topologies that are con-
tradicted by observed motion. Over time, the true patterns
of motion emerge as those which are not contradicted by
the evidence. These patterns may then be used to initialise
a finer level search using other approaches if required. This
method thus represents an efficient and effective way to
learn activity topology for a large network of cameras, par-
ticularly with a limited amount of data.

1. Introduction

The proliferation of surveillance cameras throughout
public places has far outpaced the development of software
to monitor the video they generate. This has meant that al-
though networks of cameras have been installed to monitor
large facilities, their effectiveness is limited by a lack of co-
ordination.

A key step towards automating the monitoring of video
from many cameras is to generate an understanding of the
paths which targets may take between their fields of view.
This activity topology information is the foundation for
many fundamental tasks in networked surveillance, such as
tracking an object across the network. Although it could be
derived manually for small sets of cameras, this approach
does not scale to large networks, where cameras may fre-
quently be added, malfunction or be moved.

The aim here is not to compute an exact geographical
map of surveillance camera locations. Instead, we wish to

determine an approximate distance between pairs of cam-
eras. This distance is measured in terms of time taken to
transit between a pair of cameras. Cameras whose fields of
view overlap have zero transit time, whereas those that are
at opposite ends of a corridor may have a transit time of tens
of seconds. Note that this distance may not always reflect
the physical separation of the cameras.

In line with this goal, we use a novel representation for
activity topology estimation that is not based on tracking
objects within each camera. Instead it relies on information
that is easier to derive—the presence or absence of objects
within each field of view. This information is adequate for
topology determination, and is fast to work with, enabling
the method to scale to large camera networks.

Previously, activity topology estimation has been ap-
proached as a problem of learning the probability of tran-
sitions between fields of view (FOVs) from corresponding
tracks [5]. However, the correspondence between tracks in
different images must be supplied a priori as training data,
which limits the scale of the network for which it is useful.
Dick et al. [2] suggest an alternate approach whereby learn
activity topology is represented by a Markov model. This
does not require correspondences, but does need a training
phase and does not scale well. Ellis et al. [3] do not re-
quire correspondences or a training phase, instead observ-
ing motion over a long period of time and accumulating
appearance and disappearance information in a histogram.
This approach has been extended by Stauffer [8] and Tieu
et al. [10] to include a more rigorous definition of a tran-
sition based on statistical significance, and by Gilbert et
al. [4] to incorporate a coarse to fine topology estimation.
These methods show promise for larger scale applications,
but have only been demonstrated on networks of less than
10 cameras.

Rahimi et al. [7, 6] perform experiments on configura-
tions of several cameras involving non-overlapping FOVs.
One experiment [6] involves calculating the 2D position
and 1D orientation of a set of overhead cameras viewing
a common ground plane by manually recording the paths



followed by people in each camera’s FOV. It is shown that
a simple smoothness prior is enough to locate the cameras
and reconstruct a path where it was not visible to any cam-
era. In another experiment [7], pre-calibrated cameras are
mounted on the walls of a room so that they face horizon-
tally. In this case, the 2D trajectory of a person is recovered
as they move around in the room, even when the person is
not visible to any camera.

On a larger scale, Brand et al. [1] consider the problem
of locating hundreds of cameras distributed about an urban
landscape. Their method relies on having internal camera
calibration and accurate orientation information for each
camera, and enough cameras viewing common features to
constrain the solution. Given this information the method
can localise the cameras accurately due to the constraints
imposed by viewing common scene points from different
viewpoints.

These methods all rely on observing and analysing large
amounts of video in order to determine topology. They
also require comparisons to be made between every pair
of cameras in a network. The number of pairs of cameras
grows exponentially with the number of cameras in the net-
work, rendering exhaustive pairwise comparisons of large
volumes of data infeasible.

This paper describes a novel method for determining
which pairs of cameras may be profitably interrogated in
order to estimate their relative topology, and those which
may be ignored. The method is computationally fast, and
does not rely on accurate tracking of objects within each
camera view. In contrast to most existing methods for activ-
ity topology determination, it does not attempt to build up
evidence for camera proximity over time. Instead, it uses
observed activity to rule out topologies over time. By do-
ing this it can rapidly home in on likely camera layouts by
eliminating the least likely first. This is an easier decision
to make, especially when a limited amount of data is avail-
able. It is also based on the observation that it is impossible
to prove a positive connection between cameras—any cor-
relation of events could be coincidence—whereas it is pos-
sible to prove a negative connection by observing an object
in one camera while not observing it at all in another.

2. Problem formulation

Consider a set of cameras whose images are partitioned
into a grid of windows. The activity topology of the net-
work can be represented as the connections between these
windows. We assume that we can detect people entering
the scene reliably enough to determine their lowest visible
extent. This may be their point of contact with the ground,
or the point at which the lower portion of their body be-
comes occluded. As people move around the environment
monitored by the cameras, their lowest visible extent moves

from one window to another. Occupation is thus determined
by whether a person’s lowest visible extent falls within the
boundaries of a particular window.

By observing the occupancy of each window over time,
we can create a table of the form shown in Table 1, where
1 implies that a window is occupied and 0 implies that it
is vacant. If two windows are images of exactly the same
region in the world, we would expect their corresponding
columns in this table to match exactly. There are situations
whereby this may not be the case in practice, which we
consider later. However the observation that underlies the
work presented here is that a window which is occupied at
a particular time instant cannot correspond to any other that
is simultaneously unoccupied. Given that windows tend to
be unoccupied far more often than occupied, this is a crit-
ical observation. Determining the topological connections
between windows by looking for correlation in their occu-
pancy statistics is necessarily a slow process because simul-
taneous occupancy may occur coincidentally. Simultane-
ous occupancy and vacancy of the same space, however, is
physically impossible. Rather than attempt the slow process
of gathering positive information as to the connections be-
tween windows, we seek negative information allowing the
instant elimination of impossible connections. We refer to
such connections as having been excluded.

Window
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w1 w2 w3 w4

t1 1 0 1 0
t2 0 1 0 0
t3 0 0 1 0
t4 1 0 0 1
t5 0 0 1 0

...
...

...
...

Table 1. An example occupancy table

3. Determining window overlap

Let the set of windows over all cameras be W =
{w1 . . . wn}. Corresponding to each window wi is an oc-
cupancy vector oi = (oi1, . . . , oiT )′ with oit set to 1 if win-
dow wi is occupied at time t, and 0 if not. The exclusive-or
a⊕b of two binary numbers a and b is 1 only if either a or b
is 1 and the other is 0. If we define the same operator to ap-
ply to two vectors a = (a1, . . . , ak)′ and b = (b1, . . . , bk)′

as

a ⊕ b =
k

max
i=1

ai ⊕ bi

then the exclusive-or of the two vectors a and b is 1 if a
single pairwise comparison ai ⊕ bi is 1.



It can be inferred that two windows wi and wj do not
overlap if the exclusive-or oi ⊕ oj of the corresponding oc-
cupancy vectors oi and oj is 1. This comparison requires
very little time to calculate, even for long vectors. The oc-
cupancy vectors on which it is based do not need to be col-
lected over long periods, but rather only as long as is neces-
sary to eliminate obviously non-overlapping windows. This
is thus an extremely efficient means of eliminating windows
which do not overlap.

3.1. Improving robustness

Two windows wi and wj are unlikely to cover exactly the
same area of the scene. It is thus possible that two overlap-
ping windows might be simultaneously occupied and vacant
and therefore that the exclusive-or of the corresponding oc-
cupancy vectors might incorrectly indicate that they do not
overlap. An example of such a situation is illustrated in
Figure 1. This problem can be rectified by including the

��

��

Figure 1. Overlapping windows

neighbours of a particular window when registering its oc-
cupancy. We thus introduce a padded occupancy vector pi

which has element pit set to 1 when window wi or any of its
neighbours is occupied at time t. Calculating the exclusive-
or of two padded occupancy vectors pi and pj does not de-
termine the overlap of the corresponding windows. In fact
it is even more likely that pi ⊕ pj will deliver a false posi-
tive than the original oi ⊕ oj given that returning a 0 result
requires that all the neighbours of the windows wi and wj

also overlap.
We now introduce a uni-directional version of the

exclusive-or defined such that a � b is 1 only if a is 1 and
b is 0. If we define the corresponding vector operator in the
manner used above for two vectors a and b then

a� b =
k

max
i=1

ai � bi. (1)

A robust mechanism for determining whether two windows
wi and wj overlap is thus to calculate oi � pj on the ba-
sis of the occupancy vector oi and the padded occupancy
vector pj . The padding described so far accommodates for
occupancy misalignments in the spatial domain. The same
process may be carried out over the temporal domain to
allow accommodate errors in the synchronisation between
cameras.

The measure oi � pj is not symmetric, so it is possible
that oi � pj �= oj � pi. This may seem counter intuitive,
but in fact reflects the conservative nature of the padding
process. A response to the asymmetry of the measure might
be to require that both oi � pj and oj � pi identify the
windows as excluded before a conclusion is drawn. This ap-
proach is, however, only suitable for situations in which it is
expected that every window over the entire camera network
will exhibit the occupancy necessary to calculate exclusion.
In most practical networks, it is likely that some windows
will be in a position whereby they will never be occupied. If
we accept that a window pair do not overlap if either oi�pj

or oj � pi identify an exclusion then every window in the
network may be processed. It is still not possible to process
every possible pair of windows, but the overlap of every
window which may be occupied with every other window
in the network may be calculated.

3.2. Accumulating evidence

Rather than making a hard decision about window over-
lap based on a single contradiction, it is possible to accrue
evidence for overlap probabilistically. To do this, we mea-
sure support for the hypothesis of window overlap by using
a hypothesis test based on the likelihood ratio. First, we
define events, at some time t, as follows:

• A: pjt = 0

• B: oit = 1

• V : windows wi and wj overlap

• V : windows wi and wj do not overlap

Events A and B together define a contradiction, as stated in
the previous section. We wish to compute the likelihood of
a single contradiction, given the binary hypotheses V and
V , in order to compute the likelihood ratio

Pr (AB|V )
Pr

(
AB|V

) .

We first compute the likelihood of a contradiction occurring
if the windows overlap, written as:

Pr (AB|V ) = Pr (A|BV ) Pr (B|V ) .



Assuming that both camera fields of view are about the
same scale, the window wi is completely covered by the
neighbourhood of wj if windows wi and wj overlap. The
probability Pr (A|BV ) is therefore primarily governed by
an error rate (the rate of missed detections of occupancy)
which we call C. When an occupancy event is missed by
the detection process it is still possible that pjt = 1 because
other detections may have filled the gap. We compensate for
this eventuality by multiplying C by an estimate of the prob-
ability that pjt would be 0 if the detection failed. Therefore
the probability is given by

Pr (A|BV ) = C × count(pj = 0)
T

where T is the total number of observations (which is the
length of pj). The other term in the likelihood can be com-
puted as

Pr (B|V ) =
count(oi = 1)

T

To compute Pr
(
AB|V

)
= Pr

(
A|BV

)
Pr

(
B|V

)
we first

note that if the windows do not overlap, A and B are inde-
pendent. Therefore

Pr
(
A|BV

)
= Pr (A) =

count(pj = 0)
T

and, as Pr (B|V ) = Pr
(
B|V

)
, the likelihood ratio is given

by
Pr (AB|V )
Pr

(
AB|V

) =
Pr (A|BV )
Pr

(
A|BV

) = C

In other words, the plausibility of the hypothesis that the
windows overlaps is multiplied by C, the tracking error rate
(which we expect to be very low), for each contradiction
that occurs. This means that the overall probability of a pair
of windows overlapping is given by CK , where K is the
number of contradictory observations. This can be calcu-
lated by defining an operator � such that, for two vectors a
and b of length k, returns K:

a � b =
k∑

i=1

ai � bi. (2)

3.3. Zones

It is often the case that cameras in a surveillance network
form natural clusters. For example, a network in a build-
ing may contain one or more cameras in each office, cam-
eras monitoring corridors and public spaces, and cameras
monitoring the building exterior. This suggests a decom-
position of the topology acquisition and tracking problem
into surveillance zones. Each room may be a zone with a
number of overlapping cameras, as may a corridor, the set

of cameras monitoring a lobby, and so on. The defining
feature of a zone is that cameras within a zone have high
transition frequency, and transitions can take place in many
ways, whereas transitions between zones are more tightly
constrained. For example, the only transition between an
outdoor zone and a lobby zone may be through the front
door of the building. If these zones can be detected, they
greatly simplify subsequent network tracking problem.

The form of the occupancy vectors allows them to be to
be merged using a logical or operator. The merged occu-
pancy vector m may thus be constructed on the basis of a
set of vectors {a1 . . .an} as

m({a1 . . .an}) =

[
n⋃

i=1

ait

]
t=1...T

. (3)

Merging a set of occupancy vectors in this manner results
in a vector representing the total occupancy of all the corre-
sponding windows. Such a merged occupancy vector can-
not be used for the same purposes as an occupancy vector
representing a single window, however. This is because a 1
in the merged occupancy vector does not imply occupancy
of the entirety of the corresponding combined window area.
As an example of this we would expect that the result of
m({a1 . . .an}) � a1 would be 1. Note that the result of
a1 � m({a1 . . .an}), however, will always be 0.

Merged occupancy vectors may thus be used as the sec-
ond operand to the � operator. Given the robustness is-
sues outlined in Section 3.1, and the fact that padded occu-
pancy vectors may be used as the second operand to the �
operator, merging is performed only on padded occupancy
vectors. The overlap of a window wi with the set of win-
dows {w1 . . . wn} may thus be determined by calculating
oi � m({p1 . . .pn}).

Merging padded occupancy vectors within zones allows
a hierarchical approach to adding new cameras to the activ-
ity topology. Each new camera is compared to smaller and
smaller groups (zones) of cameras until a lack of overlap
can be shown or the correct location identified.

4. Determining activity topology

We now describe how this formulation is used to clus-
ter cameras into zones and derive an approximate topology
linking zones. Our methodology lies between that of on-
line updating, where the topology estimate is updated every
frame, and offline learning, where the topology is learnt in
a separate learning period, before the system is run.

Initially it is assumed that each window within a camera
view is related to every other window in every other camera.
Our goal is to discount those relations which our observa-
tions contradict.



4.1. Background subtraction

We detect moving objects within a camera view using the
Stauffer and Grimson background subtraction method [9].
To derive a single position from a foreground blob, we use
connected components and take the midpoint of the low
edge of the bounding box of each blob. This corresponds

Figure 2. Using background subtraction to
determine occupancy

approximately to the lowest visible extent of the person in
the image. No tracking is necessary given that no identity
information is used by the method. Figure 2 illustrates this
process.

4.2. Updating the topology estimate

The background subtraction process produces occu-
pancy information which may be used to update the topol-
ogy estimate at every time step using the procedure outlined
in Section 3.1. It is also possible to accrue this information
in order to apply it in a batch using the process described in
Section 3.2. New occupancy information is generated with
every new frame retrieved from the camera, which may oc-
cur as often as 30 times a second. Significant batches of
occupancy information can thus be acquired in very short
periods of time. Thus, rather than requiring the processing
of large amounts of video in order to determine topology
the method is capable of generating relevant information as
soon as occupancy may be measured. This means not only
that topology information is accessible quickly, but also that
the method may be applied in situations where only short
segments of video are available. This may be the case, for
instance, when a camera is moving from one location to an-
other (such as in the case of a pan-tilt-zoom camera).

5. Results

5.1. Synthetic Testing

Synthetic data was generated so as to simulate a network
of 50 cameras. The fields of view of the randomly gener-
ated cameras are shown in Figure 3. Figure 3 also shows
the paths of the pedestrians (generated by an autoregression
process) from which occupancy has been calculated. The
important measure of the pedestrian activity in the network
is the number of frames exhibiting occupancy. In the testing
that was carried out 1, 000 frames were generated for each
camera with 1, 255 window occupancies identified across
the network over this period. The field of view of each
camera has been divided into 100 windows, giving a total
of 5, 000 windows for the synthetic camera network.
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Figure 3. Synthetic camera network fields of
view and tracks

The testing carried out consisted of calculating the value
of oi �pj for every pair of windows wi and wj using equa-
tion (1) from Section 3.1. These calculations were carried
out progressively, every 100 frames, which corresponds to
less than 4 seconds of video at 30 frames per second, or 20
seconds of video at 5 frames per second. Over each inter-
val the number of occupied windows was calculated, along
with the number of exclusions. Figure 4 shows these num-
bers plotted against each other, for calculations made every
100 frames. The number of exclusions identified should
be compared against the total number of exclusions for the
network which is approximately 2.5 × 107. It should be
noted also that for the measured exclusions to reach this
total would require an exhaustive set of occupancies to be
observed. Figure 4 shows that information about the topol-
ogy of the network is gained very quickly, but that the rate
of information gain slows over time. In order to determine
the veracity of the results an algebraic analysis of overlap
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Figure 4. Exclusions vs. observed occupan-
cies for synthetic testing

was carried out. Each of the measured exclusions was com-
pared against its analytic equivalent and none were found to
be in error.

5.2. Real image testing

In order to test the method on real imagery, 84 seconds
of video was recorded from a set of 4 partially overlap-
ping cameras. Example frames from these video streams
are shown in Figure 5. Each frame was divided into 225
windows, and 1, 471 window occupancies measured. The
total number of windows for the network is 1, 125, but only
156 of these were ever occupied over the course of testing.
As in the synthetic case the testing consisted of calculating
the value of oi � pj for every pair of windows wi and wj

using equation (1) from Section 3.1. A total of 252, 105 ex-
clusions were calculated by the method. The total number
of pairs of windows is 1, 265, 625, but given that the major-
ity of the windows do not see traffic it would be impossible
for the method to approach this number. Given that the true
overlap of the cameras is unknown, it was not possible to
test the veracity of every exclusion. However, manual in-
spection of all excluded areas corresponding to a randomly
selected set of 20 windows did not uncover any errors.

6. Conclusion

This paper has described a method for automatically de-
termining activity topology in large camera networks. The
method is based on the process of eliminating impossi-
ble connections rather than the slower process of building
up positive evidence of activity. The method succeeds in
both synthetic and real-image testing, and generates useful
information after only small amounts of video have been
processed.

Figure 5. Frames used in real image testing
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