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Abstract

In this paper we study the relationship between multi-
view Active Appearance Model (AAM) fitting and camera
calibration. In the first part of the paper we propose an
algorithm to calibrate the relative orientation of a set of
N > 1 cameras by fitting an AAM to sets of N images.
In essence, we use the human face as a (non-rigid) calib-
ration grid. Our algorithm calibrates a set of 2 × 3 weak-
perspective camera projection matrices, projections of the
world coordinate system origin into the images, depths of
the world coordinate system origin, and focal lengths. We
demonstrate that the performance of this algorithm is com-
parable to a standard algorithm using a calibration grid.
In the second part of the paper we show how calibrating
the cameras improves the performance of multi-view AAM
fitting.

1. Introduction

Model-based face analysis is a general paradigm with
numerous applications. A face model is typically construc-
ted from either a set of training images [3] or a set of range
images [2]. The face model is then fit to the input image(s)
and the model parameters are used in whatever the applic-
ation is. For example, in [9], the same model was used for
face recognition, pose estimation, and expression recogni-
tion.

Perhaps the most well known face models are 2D Active
Appearance Models (AAMs) [3] and 3D Morphable Mod-
els (3DMMs) [2]. More recently, [12] introduced 2D+3D
Active Appearance Models, a model with the real-time fit-
ting speed of 2D AAMs and the 3D modeling of 3DMMs.

Face models are usually fit to a single image of a face.
In many application scenarios, however, it is possible to set
up two or more cameras and acquire multiple views of the
face. If we integrate the information in the multiple views,
we can possibly obtain better application performance [5].

Although both multi-view face models [4] and al-
gorithms to fit a single view model simultaneously to mul-

tiple views [2, 8] have been proposed, little work has been
performed on the role of camera calibration in face model
fitting. In this paper we study the relationship between face
model fitting and camera calibration. Camera calibration
can be divided into two sub-topics: (1) extrinsic calibra-
tion: computing the relative orientations of a set of N > 1
cameras, and (2) intrinsic calibration: computing the focal
length, principal point, radial distortion, etc, of each cam-
era. Although we do calibrate a focal length for each cam-
era, the main goal of this paper is extrinsic calibration; i.e.
the computation of the relative orientations of N cameras.

In the first part of this paper we propose an algorithm to
calibrate the relative orientations of a set of N cameras us-
ing multi-view AAM fitting. In essence, we use the human
face as a (non-rigid) calibration grid. Such an algorithm
may be useful in a surveillance setting where we wish to
install the cameras on the fly, but avoid walking around the
scene with a calibration grid. We use the weak perspect-
ive camera model used by most 3D face modeling papers
[11, 12]. Our algorithm calibrates the 2 × 3 camera projec-
tion matrices, the focal lengths, the projections of the world
coordinate system origin into the images, and the depths of
the world coordinate system origin. Our algorithm is an ex-
tension of the multi-view AAM fitting algorithm proposed
by Hu et al. in [8]. The algorithm requires at least two sets
of multi-view images of the face at two different locations.
More images can be used to improve the accuracy if they
are available. We evaluate our algorithm by comparing it
with an algorithm that uses a calibration grid and show the
performance to be comparable.

In the second part of the paper we show how camera cal-
ibration can improve the performance of face model fitting.
We present a multi-view AAM fitting algorithm that takes
advantage of calibrated cameras. We demonstrate that our
algorithm (also an extension of [8]) results in far better fit-
ting performance than either single-view fitting [12] or un-
calibrated multi-view fitting [8]. We consider two perform-
ance measures: (1) the robustness of fitting - the likelihood
of convergence for a given magnitude perturbation from the
ground-truth, and (2) speed of fitting - the average number
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of iterations required to converge from a given magnitude
perturbation from the ground-truth.

We begin with a brief review of 2D Active Appearance
Models (AAMs) [3], 3D Morphable Models (3DMMs) [2],
2D+3D AAMs [12], and the efficient inverse compositional
algorithms to fit 2D AAMs [10] and 2D+3D AAMs [12].
In Section 3 we describe our calibration algorithm. Our
algorithm uses 2D+3D AAMs [12], however any 3D face
model could be used instead. In Section 4 we describe and
evaluate our calibrated multi-view AAM fitting algorithm.

2. Background

2.1. 2D Active Appearance Models

The 2D shape s of a 2D AAM [3] is a 2D triangulated
mesh. In particular, s is a column vector containing the ver-
tex locations of the mesh. AAMs allow linear shape vari-
ation. This means that the 2D shape s can be expressed as a
base shape s0 plus a linear combination of m shape vectors
si:

s = s0 +
m∑

i=1

pi si (1)

where the coefficients p = (p1, . . . , pm)T are the shape
parameters. AAMs are normally computed from training
data consisting of a set of images with the shape mesh
(hand) marked on them [3]. The Procrustes alignment al-
gorithm and Principal Component Analysis (PCA) are then
applied to compute the base shape s0 and the shape vari-
ation si.

The appearance of a 2D AAM is defined within the base
mesh s0. Let s0 also denote the set of pixels u = (u, v)T

that lie inside the base mesh s0, a convenient abuse of ter-
minology. The appearance of the AAM is then an image
A(u) defined over the pixels u ∈ s0. AAMs allow linear
appearance variation. This means that the appearance A(u)
can be expressed as a base appearance A0(u) plus a linear
combination of l appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λi Ai(u) (2)

where the coefficients λi are the appearance parameters.
The base (mean) appearance A0 and appearance images Ai

are usually computed by applying Principal Components
Analysis to the (shape normalized) training images [3].

Although Equations (1) and (2) describe the shape and
appearance variation, they do not describe how to generate
a model instance. The AAM instance with shape parameters
p and appearance parameters λi is created by warping the
appearance A from the base mesh s0 onto the model shape
mesh s. In particular, the pair of meshes s0 and s define a

piecewise affine warp from s0 to s denoted W(u;p). Note
that for ease of presentation we have omitted any mention of
the 2D similarity transformation that is used with an AAM
to normalize the shape [3]. In this paper we include the nor-
malizing warp in W(u;p) and the similarity normalization
parameters in p. See [10] for the details of how to do this.

2.2. 3D Morphable Models

The 3D shape s of a 3DMM [2] is a 3D triangulated
mesh. In particular, s is a column vector containing the ver-
tex locations of the mesh. 3DMMs also allow linear shape
variation. The 3D shape vector s can be expressed as a base
shape s0 plus a linear combination of m shape vectors si:

s = s0 +
m∑

i=1

pi si (3)

where the coefficients pi are the shape parameters. 3DMMs
are normally computed from training data consisting of a
set of 3D range images with the mesh vertices located in
them [2]. Note that what we have described as a 3D Morph-
able Model can also be regarded as a 3D AAM.

The appearance of a 3DMM is a 2D image A(u) just like
the appearance of a 2D AAM. The appearance variation of
a 3DMM is also governed by Equation (2) and is computed
in a similar manner by applying Principal Components Ana-
lysis to the unwarped input texture maps [2].

To generate a 3DMM model instance, an image forma-
tion model is needed to convert the 3D shape s into a 2D
mesh, onto which the appearance is warped. In [11] the
following scaled orthographic imaging model was used:

u = Pso(x) = σ

(
ix iy iz
jx jy jz

)
x +

(
ou

ov

)
. (4)

where (ou, ov) is an offset to the origin, the projection
axes i = (ix, iy, iz) and j = (jx, jy, jz) are orthonormal
(i · i = j · j = 1, i · j = 0), and σ is the scale. The 3DMM in-
stance is computed by first projecting every 3D shape vertex
x = (x, y, z)T onto a 2D vertex u using Equation (4). The
appearance A(u) is then warped onto the 2D mesh (taking
into account visibility) to generate the final model instance.

2.3. 2D+3D Active Appearance Models

A 2D+3D AAM [12] consists of the 2D shape variation
si of a 2D AAM governed by Equation (1), the appearance
variation Ai(u) of a 2D AAM governed by Equation (2),
and the 3D shape variation si of a 3DMM governed by
Equation (3). The 2D shape variation si and the appear-
ance variation Ai(u) of the 2D+3D AAM are constructed
exactly as for a 2D AAM. The 3D shape variation si is con-
structed from the 2D shape variation si and a collection of
tracking data using non-rigid structure-from-motion [13].
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2.4. Efficient Fitting Algorithms

We now review the efficient inverse compositional al-
gorithms to fit 2D AAMs [10] and 2D+3D AAMs [12]. The
goal of fitting a 2D AAM to an image I [10] is to minimize:

∑
u∈s0

[
A0(u) +

l∑
i=1

λiAi(u) − I(W(u;p))

]2

=

∥∥∥∥∥A0(u) +
l∑

i=1

λiAi(u) − I(W(u;p))

∥∥∥∥∥
2

(5)

with respect to the 2D shape p and appearance λi paramet-
ers. In [10] it was shown that the “project out” algorithm [6]
can be used to break the optimization into two steps. The
first step consists of optimizing:

‖A0(u) − I(W(u;p))‖2
span(Ai)⊥ (6)

with respect to the shape parameters p where the subscript
span(Ai)⊥ means “project the vector into the subspace or-
thogonal to the subspace spanned by Ai, i = 1, . . . , l.” The
second step consists of solving for the appearance paramet-
ers using the closed form expression:

λi = −
∑
u∈s0

Ai(u) [A0(u) − I(W(u;p)] (7)

assuming that the appearance vectors Ai have been or-
thonormalized. In [10] it was also shown that the inverse
compositional algorithm [1] can be used to optimize the ex-
pression in Equation (6). The final algorithm operates at
over 200 frames-per-second on a standard 3.4GHz PC.

The goal of 2D+3D AAM fitting [12] is to minimize:∥∥∥∥∥A0(u) +
l∑

i=1

λiAi(u) − I(W(u;p))

∥∥∥∥∥
2

+ K ·
∥∥∥∥∥s0 +

m∑
i=1

pi si − Pso

(
s0 +

m∑
i=1

pi si

)∥∥∥∥∥
2

(8)

with respect to p, λi, Pso, and p where K is a large constant
weight. Equation (8) should be interpreted as follows. The
first term in Equation (8) is the 2D AAM fitting criterion.
The second term enforces the (heavily weighted, soft) con-
straints that the 2D shape s equals the projection of the 3D
shape s with scaled orthographic projection Pso. Note that
in the optimization, it is the component parameters of Pso

(σ, i, j, ou, and ov) that are optimized. See Equation (4).
In [12] it was shown that the 2D AAM fitting algorithm

[10] can be extended to fit a 2D+3D AAM. The “project
out” algorithm can also be used on Equation (8). The res-
ulting algorithm requires slightly more computation per it-
eration to process the second term in Equation (8). The final
algorithm still operates comfortably in real-time, at around
60Hz on a standard 3.4GHz PC.

3. Camera Calibration

3.1. Image Formation Model

The scaled orthographic image formation model in
Equation (4) is sufficient when working with either a single
camera or multiple cameras capturing a single image. When
working with multiple cameras capturing multiple images,
it is better to use the weak perspective model:

u = Pwp(x) =
f

oz + z

(
ix iy iz
jx jy jz

)
x +

(
ou

ov

)
(9)

because Equation (9) models how the scale σ in Equa-
tion (4) varies from image to image in terms of the focal
length f and average depth of the scene oz + z. In this
last expression, oz is the depth of the origin of the world
coordinate system and z is the average depth of the scene
points measured relative to the world coordinate origin. The
“z” (depth) direction is k = i×j where × is the vector cross
product, i = (ix, iy, iz), and j = (jx, jy, jz). The average
depth relative to the world origin z equals the average value
of k · x computed over all points x in the scene.

3.2. Camera Calibration Goal

Suppose we have N cameras n = 1, . . . , N . The goal
of our camera calibration algorithm is to compute the 2× 3
camera projection matrix (i, j), the focal length f , the pro-
jection of the world coordinate system origin into the im-
age (ou, ov), and the depth of the world coordinate system
origin (oz) for each camera. If we superscript the camera
parameters with n we need to compute Pn

wp = in, jn, fn,
on

u, on
v , and on

z . There are 7 unknowns in Pn
wp (rather than

10) because there are only 3 degrees of freedom in choos-
ing the 2 × 3 camera projection matrix (i, j) such that it is
orthonormal.

3.3. Uncalibrated Multi-View Fitting

Suppose we have N images In : n = 1, . . . , N cap-
tured by the N cameras Pn : n = 1, . . . , N . We assume
that the images are captured simultaneously by synchron-
ized, but uncalibrated cameras. The naive approach is to fit
the 2D+3D AAM independently to each of the images In.
Since the images are captured simultaneously, however, the
3D shape of the face should be the same whichever image
it is computed in. The 2D+3D AAM can therefore be fit
simultaneously [8] to the N images by minimizing:

N∑
n=1




∥∥∥∥∥A0(u) +
l∑

i=1

λn
i Ai(u) − In(W(u;pn))

∥∥∥∥∥
2

+
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K ·
∥∥∥∥∥s0 +

m∑
i=1

pn
i si − Pn

so

(
s0 +

m∑
i=1

pi si

)∥∥∥∥∥
2


 (10)

with respect to the N sets of 2D shape parameters pn, the
N sets of appearance parameters λn

i (the appearance may
be different in different images due to different camera re-
sponse functions), the N sets of camera matrices Pn

so, and
the one, global set of 3D shape parameters p. Note that the
2D shape parameters in each image are not independent, but
are coupled in a physically consistent manner through the
single set of 3D shape parameters p. The optimization in
Equation (10) uses the scaled orthographic camera matrices
Pn

so in Equation (4) and optimizes over the N scale para-
meters σn. Using Equation (9) and optimizing over the fo-
cal lengths fn and origin depths on

z is ambiguous. Multiple
values of fn and on

z yield the same value of σn = fn

on
z +zn .

3.4. Calibration using Two Time Instants

For ease of understanding, we first describe an algorithm
that uses two sets of multi-view images captured at two time
instants. Deriving this algorithm also allows us to show that
two sets of images are needed and derive the requirements
on the motion of the face between the two time instants. In
Section 3.5 we describe an algorithm that uses an arbitrary
number of multi-view image sets and in Section 3.6 another
algorithm that poses calibration as a single optimization.

The uncalibrated multi-view fitting algorithm defined by
Equation (10) computes in, jn, on

u, on
v , and σn. All that

remains to calibrate the cameras is to compute fn and
on

z . These values can be computed by applying (a slightly
modified version of) the uncalibrated multi-view fitting al-
gorithm a second time with the face at a different location.
With the first set of images we compute in, jn, on

u, on
v . Sup-

pose that σn = σn
1 is the scale at this location. Without

loss of generality we also assume that the face model is at
the world coordinate origin at this first time instant. Finally,
without loss of generality we assume that the mean value of
x computed across the face model (both mean shape s0 and
all shape vectors si) is zero. It follows that z is zero and so:

fn

on
z

= σn
1 . (11)

Suppose that at the second time instant the face has under-
gone a global rotation R and translation T. Both the rota-
tion R and translation T have three degrees of freedom. We
then perform a modified multi-view fit, minimizing:

N∑
n=1




∥∥∥∥∥A0(u) +
l∑

i=1

λn
i Ai(u) − In(W(u;pn))

∥∥∥∥∥
2

+ K·

∥∥∥∥∥s0 +
m∑

i=1

pn
i si − Pn

so

(
R

(
s0 +

m∑
i=1

pi si

)
+ T

)∥∥∥∥∥
2




(12)
with respect to the N sets of 2D shape parameters pn, the N
sets of appearance parameters λn

i , the one global set of 3D
shape parameters p, the rotation R, the translation T, and
the N scale values σn = σn

2 . In this optimization all of the
camera parameters (in, jn, on

u, and on
v ) except the scale (σ)

in the scaled orthographic model Pn
so are held fixed to the

values computed in the first time instant. Since the object
underwent a global translation T then zn = kn · T where
kn = in × jn is the z-axis of camera n. It follows that:

fn

on
z + kn · T = σn

2 . (13)

Equations (11) and (13) are two linear simultaneous equa-
tions in the two unknowns (fn and on

z ). Assuming that
kn · T �= 0 (the global translation T is not perpendicular
to any of the camera z-axes), these two equations can be
solved for fn and on

z to complete the camera calibration.
Note also that to uniquely compute all three components of
T using the optimization in Equation (12) at least one pair
of the cameras must be verged (the axes (in, jn) of the cam-
era matrices Pn

so must not all span the same 2D subspace.)

3.5. Multiple Time Instant Algorithm

Rarely are two sets of multi-view images sufficient to
obtain an accurate calibration. The approach just described
can easily be generalized to N time instants. The first time
instant is treated as above and used to compute in, jn, on

u, on
v

and to impose the constraint on fn and on
z in Equation (11).

Equation (12) is then applied to the remaining N−1 frames
to obtain additional constraints:

fn

on
z + kn · Tj

= σn
j (14)

for j = 2, 3, . . . , N where Ti is the translation estimated
in the jth time instant and σn

j is the scale. Equations (11)
and (14) are then re-arranged to obtain an over-constrained
linear system which can then be solved to obtain fn and on

z .

3.6. Calibration as a Single Optimization

The algorithms in Section 3.4 and 3.5 have the disad-
vantage of being two stage algorithms. First they solve for
in, jn, on

u, and on
v , and then for fn and on

z . It is better to
pose calibration as the single large non-linear optimization
of:∥∥∥∥∥A0(u) +

l∑
i=1

λn,j
i Ai(u) − In,j(W(u;pn,j))

∥∥∥∥∥
2

+ K·
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∥∥∥∥∥s0 +
m∑

i=1

pn,j
i si − Pn,j

wp

(
Rj

(
s0 +

m∑
i=1

pj
i si

)
+ Tj

)∥∥∥∥∥
2

(15)
summed over all cameras n and time instants j with respect
to the 2D shape parameters pn,j , the appearance paramet-
ers λn,j

i , the 3D shape parameters pj , the rotations Rj , the
translations Tj , and the calibration parameters in, jn, fn,
on

u, on
v , and on

z . In Equation (15), In,j represents the image
captured by the nth camera in the jth time instant and the
average depth z = kn · Tj in Pn,j

wp . Finally, we define the
world coordinate system by enforcing R1 = I and T1 = 0.

The expression in Equation (15) can be optimized by it-
erating two steps: (1) The calibration parameters are optim-
ized given the 2D shape and (rotated translated) 3D shape;
i.e. the second term in Equation (15) is minimized given
fixed 2D shape, 3D shape, Rj , and Tj . This optimization
decomposes into a separate 7 dimensional optimization for
each camera. (2) A calibrated multi-view fit (see Section 4)
is performed on each frame in the sequence; i.e. the en-
tire expression in Equation (15) is minimized, but keeping
the calibration parameters in Pn,j

wp fixed and just optimizing
over the 2D shape, 3D shape, Rj , and Tj . The optimization
can be initialized using the algorithm in Section 3.5.

3.7. Empirical Evaluation

We tested our algorithms on a trinocular stereo rig. Two
example input images from each of the three cameras are
shown in Figure 1. We wish to compare our algorithm
with an algorithm that uses a calibration grid. Although
our calibration algorithm computes 2 × 3 camera projec-
tion matrices, focal lengths, etc, the easiest way to compare
two algorithms is using the epipolar geometry. Although
we could use the calibration grid data to compute similar
camera matrices, the world coordinate origin and units will
be different. A direct comparison of the camera matrices
therefore requires the units of one of them to be changed,
possibly biasing the comparison. Instead, we compute a
fundamental matrix from the camera parameters in, jn, fn,
on

u, on
v , and on

z estimated by our algorithm and use the 8-
point algorithm [7] to estimate the fundamental matrix from
the calibration grid data.

In Figures 2 and 3 we present the results of a quantitat-
ive comparison. We compare the fundamental matrices by
extracting a set of ground-truth feature point correspond-
ences and computing the RMS distance between each fea-
ture point and the corresponding epipolar line predicted by
the fundamental matrix. In Figure 2 we present results on
10 images of a calibration grid, similar (but not identical)
to that used by the calibration grid algorithm. The ground-
truth correspondences are extracted using a corner detector.
In Figure 3 we present results on 1400 images of a face at
different scales. The ground-truth correspondences are ex-

Ti
m

e
1

Ti
m

e
2

Camera 1 Camera 2 Camera 3

Figure 1. Example inputs to our calibration algorithms:
A set of images of a face at a variety of different positions.

tracted by fitting a single-view AAM independently to each
image (i.e. no use of the multi-view geometry is used.)

Although the optimization algorithm of Section 3.6 per-
forms significantly better than the two stage algorithm in
Section 3.5, both AAM-based algorithms perform slightly
worse than the 8-point algorithm on the calibration grid
data in Figure 2. The main reason is probably that the
ground-truth calibration grid data covers a similar volume
to the data used by the 8-point algorithm, but a much lar-
ger volume than the face data used by the AAM-based al-
gorithms. When compared on the face data in Figure 3
(which covers a similar volume to that used by the AAM-
based algorithm), the 8-point algorithm and the optimiza-
tion algorithm of Section 3.6 perform comparably well.
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Figure 2. Quantitative comparison between our AAM-
based calibration algorithms and the 8-point algorithm [7]
using a calibration grid. The evaluation is performed on 10
images of a calibration grid (data similar to, but not used by
the 8-point algorithm). The ground-truth is extracted using
a corner detector. We plot the RMS distance error between
epipolar lines and the corresponding feature points for each
of the 10 images.
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Figure 3. Quantitative comparison between our AAM-
based calibration algorithms and the 8-point algorithm [7]
using a calibration grid. The evaluation is performed on
1400 images of a face. The ground-truth is extracted us-
ing a single-view AAM fitting algorithm. We plot the RMS
distance error between epipolar lines and the corresponding
feature points for each of the 1400 images.

In Figure 4 we show a set of epipolar lines computed
by the algorithms. In Figure 4(a) we show an input im-
age captured by camera 1, with a few feature points marked
on it. In Figure 4(b) we show the corresponding epipolar
lines. The solid blue epipolar lines are computed using the
8-point algorithm. The dashed black epipolar lines are com-
puted using the two stage multiple time instant algorithm
of Section 3.5. The solid magenta epipolar lines are com-
puted using the optimization algorithm of Section 3.6. Fig-
ures 4(d) and (c) are similar for feature points marked in
camera 3. The epipolar lines for the optimization algorithm
are far closer to those for the 8-point algorithm than those
of the two stage algorithm.

4. Calibrated Multi-View Fitting

Once we have calibrated the cameras and computed in,
jn, fn, on

u, on
v , and on

z , we can then use a weak perspective
calibrated multi-view fitting algorithm. We can optimize:

N∑
n=1




∥∥∥∥∥A0(u) +
l∑

i=1

λn
i Ai(u) − In(W(u;pn))

∥∥∥∥∥
2

+ K·

∥∥∥∥∥s0 +
m∑

i=1

pn
i si − Pn

wp

(
R

(
s0 +

m∑
i=1

pi si

)
+ T

)∥∥∥∥∥
2




(16)
with respect to the N sets of 2D shape parameters pn, the N
sets of appearance parameters λn

i , the one global set of 3D

feature points
grid
face
face optimized

(a) Camera 1 Image (b) Epipolar Lines in Camera 2

(c) Epipolar Lines in Camera 2 (d) Camera 3 Image

Figure 4. Qualitative comparison between our AAM-
based calibration algorithms and the 8-point algorithm [7].
(a) An input image captured by the first camera with several
feature points marked on it. (b) The corresponding epipolar
lines. The solid blue epipolar lines are computed using
the 8-point algorithm, the dashed black epipolar lines using
the two stage multiple time instant algorithm, and the solid
magenta epipolar lines are computed using the optimization
algorithm. (d) Shows the input image of the third camera,
and (c) the corresponding epipolar lines for the second cam-
era.

shape parameters p, the global rotation R, and the global
translation T. In this optimization, Pn

wp is defined by Equa-
tion (9) where z = kn · T. It is also possible to formulate
a similar scaled orthographic calibrated algorithm in which
Pn

wp is replaced with Pn
so defined in Equation (4) and the

optimization is also performed over the N scales σn.

4.1. Empirical Evaluation

An example of using our calibrated multi-view fitting al-
gorithm to track by fitting a single 2D+3D AAM to three
concurrently captured images of a face is shown in Figure 5.
The top row of the figure shows the tracking result for one
frame. The bottom row shows the the tracking result for a
frame later in the sequence. In each case, all three input
images are overlaid with the 2D shape pn plot in blue dots.
The single 3D shape p at the current frame is displayed in
the top-right of the center image. The view-dependent cam-
era projection of this 3D shape is also plotted as a white
mesh overlaid on the face. We also display the recovered
roll, pitch, and yaw of the face (extracted from the global
rotation matrix R) in the top left of the center image. The
three cameras combine to compute a single head pose, un-
like [8] where the pose is view dependent.

In Figure 6 we show quantitative results to demonstrate
the increased robustness and convergence rate of our cal-
ibrated multi-view fitting algorithm. In experiments sim-

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



Ti
m

e
A

yaw
+3.1

pitch

+1
.1

roll: −1.5

Ti
m

e
B

yaw
+3.1

pitch

+1
.1

roll: −1.5

Left Camera Center Camera Right Camera

Figure 5. An example of using our calibrated multi-view fitting algorithm to fit a single 2D+3D AAM to three simultaneously
captured images of a face. Each image is overlaid with the corresponding 2D shape for that image in blue dots. The single 3D
shape p for the current triple of images is displayed in the top right of the center image. This 3D shape is also projected into each
image using the corresponding Pn, and displayed as a white mesh. The single head pose (extracted from the rotation matrix R) is
displayed in the top left of the center image as roll, pitch, and yaw. This should be compared with the algorithm in [8] in which there
is a separate head pose for each camera.

ilar to those in [10], we generated a large number of test
cases by randomly perturbing from a ground-truth obtained
by tracking the face in the multi-view video sequences. The
global 3D shape parameters p, global rotation matrix R,
and global translation T were all perturbed and projected
into each of the three views. This ensures the initial per-
turbation is a valid starting point for all algorithms. We
then run each algorithm from the same perturbed starting
point and determine whether they converged or not by com-
puting the RMS error between the mesh location of the fit
and the ground-truth mesh coordinates. The algorithm is
considered to have converged if the total spatial error is less
than 1 pixel. We repeat the experiment 10 times for each set
of 3 images and average over all 300 image triples in the test
sequences. This procedure is repeated for different values
of perturbation energy. The magnitude of the perturbation
is chosen to vary on average from 0 to 3 times the 3D shape
standard deviation. The global rotation R, and global trans-
lation T are perturbed by scalar multiples α and β of this
value. The values of α and β were chosen so that the rota-
tion and translation components introduce the same amount
of pertubation energy as the shape component [10].

In Figure 6(a) we plot a graph of the likelihood (fre-
quency) of convergence against the magnitude of the ran-
dom perturbation for the the 2D+3D algorithm [12] ap-
plied independently to each camera, the uncalibrated multi-
view 2D+3D algorithm of [8], and the two calibrated
multi-view algorithms described in this paper: scaled or-
thographic, Equation (12), and weak-perspective, Equation

(15). The results clearly show that the calibrated multi-view
algorithms are more robust than the uncalibrated algorithm,
which is more robust than the 2D+3D algorithm [12]. The
main source of the increased robustness is imposing the
constraint that the head pose is consistent across all N
cameras. We also compute how fast the algorithms con-
verge by computing the average RMS mesh location error
after each iteration. Only trials that actually converge are
used in this computation. The results are included in Fig-
ure 6(b) and show that the calibrated multi-view algorithms
converge faster than the uncalibrated algorithm, which con-
verges faster than the 2D+3D algorithm. Overall the weak-
perspective calibrated algorithm performs the best.

5. Conclusion

We have shown how multi-view face model fitting can
be used to calibrate the relative orientations of a set of
N > 1 cameras. In essence, we use the human face as a
(non-rigid) calibration grid. Specifically, we used the weak
perspective camera model used by most 3D face modeling
papers [11, 12] and calibrated the 2 × 3 camera projection
matrices, the focal lengths, the projection of the world co-
ordinate system origin into the images, and the depths of the
world coordinate system origins. We demonstrated that the
resulting calibration is of comparable accuracy to that ob-
tained using a calibration grid. We have also shown how the
resulting calibration can be used to improve the perform-
ance of multi-view face model fitting.
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(a) Frequency of Convergence (b) Rate of Convergence

Figure 6. (a) The likelihood (frequency) of convergence plot against the magnitude of a random perturbation to the ground-truth
fitting results computed by tracking through a trinocular sequence. The results show that the calibrated multi-view algorithms
proposed in this paper are more robust than the uncalibrated multi-view algorithm proposed in [8], which itself is more robust than
the 2D+3D algorithm [12]. (b) The rate of convergence is estimated by plotting the average error after each iteration against the
iteration number. The results show that the calibrated multi-view algorithms converge faster than the uncalibrated algorithm, which
converges faster than the 2D+3D algorithm.

In order to compute the focal lengths and depths of the
world origin and so fully calibrate the cameras, we need
at least two cameras and at least two time instants. It is
not possible to compute the focal lengths with just a single
camera (however many images are captured) or just a single
time-instant (however many cameras are used.) However,
with two or more cameras and two more more time instants
the cameras can be fully calibrated. The only requirements
are that: (1) for each camera, the translation of the face
between at least one pair of time instants is not perpendicu-
lar to the z-axis, and (2) not all of the camera z-axes are par-
allel. The second condition is required to compute all three
components of T using the optimization in Equation (15).
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