
Proceedings of the 1998 IEEEJRSJ 
Inti. Conference on Intelligent Robots and Systems 

Victoria, B.C., Canada October 1998 

A Localisation Method with an 
Omnidirectional Vision Sensor Using Projective Invariant 

Bruno MARHIC, El Mustapha MOUADDIB' IEEE member, and Claude PEGARD. 

Universite Picardie Jules Verne (UPJV) 
Groupe de Recherche sur l'halyse et la Commande des SYst6mes (GRACSY) 

7 rue du MOULIN NEW, 80 000 AMIENS, France 
E-mail: Bruno.Marhic@sc.u-picardie.k 

Abstract 
In this paper, we first present a short description of 

our conic sensor. Furthermore, we will pay special 
attention to the famous projective invariant, represented 
by the cross-ratio. We will end this paper by presenting a 
new ID cross-ratio application that enables us to localise 
our mobile robot SARAH efficiently. With the method that 
we propose using, the camera does not need to be 
calibrated and this vision system, based on an 
omnidirectional sensor, is a major advantage for the 
navigation of an autonomous mobile robot. 

1 Introduction 
The principal task of computer vision is object or 

scene recognition. In most vision-based approaches for 
localisation, environment modelling is rendered complex 
as the geometric properties are not invariant to the 
projective transformation nor to the change of viewpoint 
[SI. Moreover, the matching phase is generally very 
complex and time consuming and most approaches 
require camera calibration. 

Our previous dealings with an omnidirectional vision 
system are exposed in [13][14]. In [13], the approach is 
purely combinational and is not completely immune to the 
parasite straight lines of the image. We define parasite 
straight lines as all straight lines that do not correspond, a 
priori, to a recorded reference point on the map. In [ 141, a 
solution to the problem of parasite straight lines is 
suggested by fusing the odometric sensors with the 
omnidirectional vision. The method suggested in [I41 
renders good results, but does necessitate a fusion of the 
sensors. hi a recent work [15], K.S. Roh et a1 use 
projective invariants to localise a mobile robot. However, 
their method requires a vanishing point formed by the 
image of a corridor in order to be able to calculate an 
invariant in the scene. 

In this paper, we present a new application of 1D 
cross-ratio (and its dual for four lines), in order to resolve 
the matching between the model (in any type of 
environment) and an omnidirectional image of the scene. 
Our matching method is trivial and does not require 

camera calibration as we also use geometric projective 

What are invariants? The idea of invariance in 
computer vision appears when one has analysed the 
human ability to recognise objects. Invariants are 
quantities that allow for matching an object (or a scene) in 
an image with a model, no matter the transformation 
applied to the model and no matter the viewpoint. We use 
the term "transformation" in its larger sense, meaning that 
it can contain the composition of several elementary linear 
transformations (rotation, translation, scaling, shearing...). 
More the transformation is general, complex, more it is 
difficult to find invariants. This leads us to the 
unavoidable question: for which type of geometric 
transformation do we want to calculate an invariant 

The major part of invariants listed in the computer 
vision literature are intrinsic invariants, more often called 
geometric descriptors or geometric invariants ; however 
there are also non-geometric invariants called extrinsic 
invariants [2]. 

We can distinguish two significant classes of 
invariants: global invariants (or integrals) [3] and local 
invariants (or dzfferentials) [4]. A global invariant defines 
information on the object in its entirety, which renders it 
quite insensitive to noise. Such invariants necessitate 
knowledge of the entire object or scene, but are rather 
sensitive to occlusions. A local invariant defines 
information on a point or a small unity of points (semi- 
local) independently of the other points that constitute the 
contour of the object. These invariants (local and semi- 
local) are much more immunised to occlusions as the 
contour is not used in its entirety, but are rather sensitive 
to noises, which implies that in most cases a preliminaiy 
image filtering is needed. Generally, differential invariants 
methods require high orders of derivatives for calculating 
invariants, which is not without consequences for the 
reliability of these methods. 

Eventhough all invariant quantities can normally be 
classed in either the globallintegral invariant family, or in 
the localldifferential invariant family, the algebraic 
invariants merit a new class. Algebraic methods imply the 
calculation of implicit polynomes of the contour [5 ] ,  such 
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as conics, quadrics, etc. Therefore, contrary to differential 
invariants that are defined locally (a point), algebraic 
invariants remain constant for the entire implicit 
polynome considered; algebraic invariants are regional 
invariants (between local and global) and are much less 
sensitive to image noises compared to differential 
invariants. Examples of algebraic invariants are given in 
[61. 

Using quasi-invariants, that are easier to obtain than 
invariants, might prove helpful. Unfortunately, these 
quantities (quasi-invariant) are only "invariant" on the 
limited transformation range for which they were 
calculated. 

2 
sensor: SYCLOP' 

Intrinsic properties of our conic 

Our conic sensor is made up of two essential parts: a 
CCD camera and a conic reflector (Figure 1-a). These two 
parts are separated by a glass support. This type of 
perception system is also used by YAGI [l] with the 
COPIS system. An example of an image generated by the 
omnidirectional sensor is given in Figure 1-b. 

2, the line L' in the image plane (n) is the projective line 
of L with point 0 as the centre of projection; this 
geometric transformation i:j the fundamental 1D projective 
transformation. The 1D projective mapping between lines 
is given by the 2x2 homogtmeous transformation matrix T, 
so that x = T.X where [x,:, x2IT are the homogeneous co- 
ordinates on the transformed line. There are three 
essential parameters to defiie the matrix T (over scale of 
T is not important). 

Figure 2: Radial straight lines formation and the 1D projective 
transformation. 

- -- 
(a) (b) 

Figure 1 : The omnidirectional sensor and a conic image. 

Advantage for navigation: Associating a conic mirror 
with a camera enables us to obtain a panoramic image 
(360O) of the robot's environment. This characteristic is a 
major asset to the navigation of an autonomous mobile 
robot, as it takes away the robot's "direction of the vision 
field" constraint for a given robot's configuration XT=[xr, 
yr, Or]lRc, where Re is the absolute reference of the 
environment. This property of omnidirectionality offers a 
better chance for the matching phase between models and 
the scene and, therefore, a higher chance of localising 
itself according to the landmarks of the environment. 

Geometrical advantage: The use of this particular 
sensor enables us to modelise the 3B environment of the 
robot into a simple 2D map, containing reference points 
expressed in the fiame Re. These points represent the 
vertical landmarks of the environment. The orthographic 
projection of the vertex S of the cone (which lies on the 
revolution axis A), gives the point 0 in the image plane 
(x) .  This point 0 is materialised through the intersection 
of the virtual view lines in the image. Therefore, this point 
0 is a virtual projection centre. As we can see from Figure 

3 Theoretical Preliminaries 

3.1 Basic theory of cross-ratio 
Cross-ratio (also lcnowni as anharmonic-ratio) has been 

recognised for a long time as being the most fundamental 
projective invariant. All other projective invariants can be 
derived fiom the cross-ratio. We would like to give one 
historical example. In 1827, the mathematician AF 
Misbius [7] proved the invariance of 1D cross-ratio and 
these generalisations to triangle areas and tetrahedric 
volumes. Chapter 11 of [SI presents, in a clear and 
relatively concise fashion, the cross-ratio for its use in 
computer vision. 

Let PI,. .,4 be any four collinear points in the plane. The 
following theorem [9], defines the cross-ratio: 

Theorem: The cross-rutio of distances between any 
four points in the object h e  is the same as the cross-ratio 
of distances between their images in any image line 
(Figure 3). 

Let p be the cross-ratio of the 4 collinear points: 

where DG is the distance from Pi = [xi, yiIT to P, = [x,, y,IT 
along the line L (idem for Dij). The cross-ratio is an 
absolute invariant. Proof of the preceding theorem is 
given in [9]. 

~~ 
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Figure 3: Theorem for point projections and cross-ratios. 

Fundamental theorem [ 1 11: Any homography 
preserves the cross-ratio. 

A homographic transformation is any linear 
transformation in homogeneous co-ordinates, including 
central projection (perspective projection), linear scalings, 
skewings, rotations, translations ...Thus, our conic sensor 
preserves the cross-ratio. 

Since points and lines are dual, an equivalent cross- 
ratio for lines exists. The dual relation to collinearity is 
incidence at a point. A cross-ratio is defined on four lines 
which are incident at a single point. Any set of lines 
incident at a common point is called a pencil. The cross- 
ratio of a pencil can be defined in terms of the angles 
between the lines as shown in Figure 4, and is given by: 

(1 bis) 

Figure 4: The dual configuration for the cross-ratio. 

Unfortunately, the cross-ratio depends on the order in 
which the points are marked. If the labels of the four 
points are permuted, the cross-ratio of four points renders 
only six different values (of which three are the inverse of 
the other three) for twenty-four (4!) possible labelisations. 
The six different values in relation to p are [lo]: 

P1= P P3=1 - P  P5 = P1(-P*) 

P2 = P i 1  p4 = p3-' P6 = PZ(-P3) 

In order to remedy this numeration problem (that can 
hinder the recognition of objects), we can use symmetric 
functions of p, that are invariant to the permutation of 
labels [11][12]. The functions Il(p), I&), and 13(p) are 
examples of permutation invariant functions: 

Il(p) = ci=1 ,... 6 Pi 9 (2) 

(P'-P+f 
I3(P) = 

P2(P-1)' 
(4) 

where I&) is called the j-invariant. Unfortunately, the use 
of such functions (I1 and 12) of p is very dainty as these 
functions are unstable. As a matter of fact, only one cross- 
ratio needs to be unstable to render the functions 
IklJ(p) unstable as well. The use of the j-invariant (eq. 
(4)) is preferable. 

3.2 Calculation of the Position 

the vector X: 
In the static case, the robot's configuration is given by 

where (G ,yc) are the robot's co-ordinates in the world 
frame Re and 8 is the robot's orientation in the same 
frame. The robot's configuration is determined by the 
equations linking the sensorial radial straight lines (in the 
image) with the co-ordinates of the landmarks (eq. (5)). 

Y c - Y i  

xc -xi 
tan(6 + + i )  = ~, 

where is the relative angle of the landmark Bi in the 
robot's frame Rr and (xl ,yi) are the co-ordinates of the 
landmark Bi. We obtain one equation for each matched 
radial straight line. The system of non-linear equation 
obtained is identical to the one managed by the 
goniometrical localisation methods [ 161. We refer the 
interested readers to [ 13][ 141, where this localisation 
method is treated. 

4 Experimental Results 
On the basis of the discussion above, our experimental 

results with real images are shown. We have implemented 
our localisation algorithm on the mobile robot SARAH. 

The map of the environment is known a priori. The 
environment's map creation is an off-line process. This 
map is simply a set of reference points in the world's 
reference frame Re. These points represent the absolute 
location of the vertical landmarks (doors, wall's 
junctions. ..). 

4.1 Candidates' formation for matching 
In order to simplify the following experimental results, 

we voluntarily limited ourselves to determining just one 
invariant-model with two aligned and contiguous doors of 
our laboratory (Figure 5). It is easy to generalise the 
following principle €or each quadruplet of collinear points 
of the environment's map and design a model table. 
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Invariant-model design: As we mentioned above, we 
calculate an invariant-model pair with two doors. We 
simply apply the equations (1) and (4), where D13 = 
dist(P1, P3) = 117.7 Cm, DL4 = 198 Cm, DZ4 = 107.5 Cm et 
Dz3 = 27.2 Cm. The value of the model-invariant is given 
by the (pmod, jmd) pair (eq. (6)). The evaluation of the 
model-invariant is an off-line calculation. 

Pmod = (1 17.7 / 198) / (27.2 / 107.5) = 23494 
(6) jmod = 7.2161 

Primitive extraction: For each image, we first apply a 
low pass filter of a 3x3 weighted kernel window in order 
to reduce the noise. We then calculate a 3x3 Sobel filter in 
order to extract the boundaries of the conic image (Figure 
6). Finally, we apply a modified Hough transformation in 
order to design the conic image's radial straight lines 
(Figure 7). 

Candidates formation: Let n be the number of 
primitives extracted from the conic image. Then, there are 
C(n,4) combinations of quadruplets of straight lines. We 
calculate one cross-ratio for each quadruplet and compare 
it with the model. As the cross-ratio is not a metric 
dimension, a comparison by difference makes no sense. 
We have to implement the distribution function F(p) of 
the cross-ratio to be able to compare the different cross- 
ratios. Thus, we take the following equation [I71 as the 
distance between two cross-ratios: 

i 

d(P,,P2) = min(lF(p1) - F(P2 $1 - IF(P1) - F(P2 1) Y 

where F is the distribution function. The projective 
distance d will ly between 0 and %. Then, we reject all 
cross-ratios too far &om the model. We also apply two 
trivial criteria to decrease the number of candidates. First, 
as the model is calculated &om four aligned points on the 
same wall, we can reject, without any loss of information, 
the angular sectors (formed by the lines of the quadruplet) 
bigger than 180 degrees. Secondly, we can also reject all 
the angular sectors smaller than 10 degrees, this means 
that the robot is too far f2om the four landmarks. All the 
non-rejected quadruplets are candidates for the 
matching\localisation step. 

(a) 
7315 
2114 

The following table, the Table 1, shows the effects of 
the different criteria on the numbers of candidates for the 
images (a) ...( d) of the Figure 7. 

Table 2 shows the values of invariants for the 
quadruplet of straight lines in the image that correspond 
with the vertical landmarks that have served to determine 
the model-invariant. There is an invariant pair for each 
image (a), ...( d) of Figure 6. In Table 2, we have also 
shown the mean m over the four images, the standard 
deviation Q and the percentage of the standard deviation 
to the mean. Table 2 shows that, essentially, all of the 
values pi and ji are constants; they remain stable in spite of 
the change in viewpoint. This shows that the values of the 
invariant are reliable, even for noisy images. One can also 

(b) ( c) (d) 
3060 7315 7315 
1115 1381 2225 

notice that invariants (pmo,d, jmd) are between mp, j f op, j ; 
this shows that ID cross-ratio is reliable, when one 
considers projective transformation. 

Rejection criteria I NbofCandidates I 

~ 

11 d(pmod,pi) '0.006 I 175 I 63 I 58 I 105 11 
Table 1: Number of candidates &er the different criteria. 

II I Crow Ratio I J-invariant 11 

Figure 5 :  Geometric configuration for the model. 

4.2 Matching and lalcalisation 
The use of invariants makes the matching phase trivial 

and efficient. We calculate a hypothetic configuration for 
each selected quadruplet in the image. In our case, the 
system of equations (5) to be resolved is overdetermined 
(four lines). An iterative method, such as the Newton- 
Rapson's, could be used here. Then, to validate the 
hypothetic configuration, we try to match all other 
landmarks of the map with the lines in the image. Just one 
quadruplet of lines in the image has to verify the previous 
condition. 

Table 3 shows the localisation results from the images 
of the Figure 7. The configuration X = [xc yc is 

expressed in millimetres for (&; yc) and in degrees for 8. 
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Table 3: Localisation results. 

t61 

t71 

The experimental results shown in Table 3 are 
relatively satisfying but, unfortunately, they are not 
accurate enough. However, we can easily increase the 
precision, if we pay more attention to the different steps of 
this localisation treatment. The errors come fiom: model- 
map (environment) design, angles estimation (round to 
degree),. . . 

P I  

i91 

5 Conclusions 
In this paper, we have first presented a brief overview 

of the different techniques of invariants used in computer 
vision. We then concentrated on the famous projective 
invariant, which is the cross-ratio. Next, with the help of 
an application using a conic sensor, we demonstrated that 

101 

111 

r, ", the &&,-ratio is reliable and suitable when the projective 
transformations and real noisy images are taken into 
account. We have also shown that geometric invariants 
are useful tools for the localisation of a mobile robot, 
because they are viewpoint invariant. 

In the case where one considers more than one 
invariant pair as model to define the environment, 
occlusion of any vertical landmark does not pose a 
problem because our matching method is semi-local. 

Man-made map design is a fastidious and cumbersome 
task, thus we now work to substitute this map by real 
conic images as model base. 
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Figure 6: Extracted straight lines from conic images and cross- 

ratio determination. 

('4 
Figure 7. Straight lines and conic images. 
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