

Multi-View Geometry

- Different views of a scene are not unrelated
- Relationships exist between two, three and more cameras

■ Question: Given an image point in one image, how does this restrict the position of the corresponding image point in another image?

- Reference: R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2000

Three Questions

Multi-View Stereo
[Fitzgibbon and Zisserman, 1998]

1. Correspondence geometry: Given an image point X in the first view, how does this constrain the position of the corresponding point X^{\prime} in the second image?
2. Camera geometry (motion): Given a set of corresponding image points $\left\{x_{i} \leftrightarrow x^{\prime}\right\}, \mathfrak{i}=1, \ldots, n$, what are the cameras P and P^{\prime} for the two views?
3. Scene geometry (structure): Given corresponding image points $X_{i} \leftrightarrow X_{i}^{\prime}$ and cameras $\mathrm{P}, \mathrm{P}^{\prime}$, what is the position of (their pre-image) X in the 3D world?

Applications: Stereopsis, 3D scene reconstruction, making panoramic images, structure from motion

Modeling Camera Projection

- The coordinate system
\square Pinhole camera model as an approximation
\square Put the pinhole (aka optical center, center of projection) at the origin
\square Put the image plane (projection plane) in front of the optical center

Camera Parameters

- A camera is described by several parameters
\square Translation T of the optical center from the origin of world coords
\square Rotation R of the image plane
\square focal length f, principle point $\left(x_{c}^{\prime}, y_{d}^{\prime}\right)$, pixel size $\left(s_{x}, s_{y}\right)$
\square blue parameters are called "extrinsics," red are "intrinsics"
- Projection equation

\square The projection matrix models the cumulative effect of all parameters
\square Useful to decompose into a series of operations

$$
\boldsymbol{\Pi}=\underbrace{\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]}_{\text {intrinsics }} \underset{\text { projection }}{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\text { rotation }}{\left[\begin{array}{cc}
\mathbf{R}_{3,33} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]} \underset{\text { translation }}{\left[\begin{array}{c}
\mathbf{H}_{3 \times 3} \\
\mathbf{0}_{1 \times 3}
\end{array}\right.} \begin{array}{c}
\mathbf{T}_{3 \times 1} \\
\hline
\end{array}]
$$

Epipolar Geometry

Co-Planarity Constraint: $C, C^{\prime}, x, x^{\prime}$ and X are co-planar

Epipolar Geometry

What if only $\mathrm{C}, \mathrm{C}^{\prime}$, and x are known?
Answer: x^{\prime} constrained to lie on epipolar line l^{\prime}

Epipolar Geometry

All points on π project onto epipolar lines l and l^{\prime}

Epipolar Geometry

epipoles e, e
= intersection of baseline with image plane
= projection of optical center in other image
= vanishing point of camera motion direction

an epipolar plane $=$ plane containing baseline (1D family)
an epipolar line $=$ intersection of epipolar plane with image (always come in corresponding pairs)

Epipolar Geometry

Family of planes π and lines l and l^{\prime} intersect in epipoles e and e^{\prime}

- Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x^{\prime} in the second image?
- Epipolar geometry constrains search for x^{\prime} from 2D to 1D

Example: Parallel Cameras

Computing the Epipolar Geometry

- Given a scene point, define it in terms of 2 vectors wrt left and right cameras

$$
\begin{aligned}
& P^{\prime}=R P+t \\
& p=M P \text { with } M=[I \mid 0] \\
& p^{\prime}=M^{\prime} P^{\prime} \text { with } M^{\prime}=[R \mid t]
\end{aligned}
$$

- Co-planarity constraint: P, P^{\prime} and t are coplanar, so their mixed product $=0$

Uncalibrated Camera

p and p^{\prime} in pixel coordinates correspond to \hat{p} and \widehat{p}^{\prime} in camera coordinates

\[

\]

$F=$ Fundamental matrix

Essential matrix, E

- Encodes information on the extrinisic camera parameters only
- E is of rank 2, since S has rank 2 (and R has full rank)
- Has only 5 degrees of freedom: 3 for rotation, 2 for translation (t can only be recovered up to a scale factor, meaning only the direction of translation can be obtained)
- Epipoles: Since for any p the epipolar line $I^{\prime}=F p$ contains the epipole e^{\prime}, so ($e^{, T} F$) $p=0$ for all p. Thus $e^{, T} F=0$ and $F e=0$

Fundamental matrix, F

- F is the unique 3×3 rank 2 matrix that satisfies $x^{\prime} T F x=0$ for all $x \leftrightarrow x^{\prime}$
- Encodes information on the intrinsic and extrinsic camera parameters
- F is of rank 2, since S has rank 2 (R and M and M' have full rank)
- Has 7 degrees of freedom
(There are 9 elements, but scaling is not significant and det $\mathrm{F}=0$)

Computing Fundamental Matrix from Point Correspondences

- We have a homogeneous set of equations A $\mathbf{f}=0$
- f can be determined only up to a scale, so there are 8 unknowns, and at least 8 point matchings are needed
" hence the name " 8 point algorithm"
- The least square solution is the singular vector corresponding the smallest singular value of \mathbf{A}, i.e. the last column of \mathbf{V} in the $\operatorname{SVD} \mathbf{A}=\mathbf{U} \mathbf{D}^{\mathbf{T}}$

Computing Fundamental Matrix

 from Point Correspondences- The fundamental matrix is defined by the equation $\quad \mathbf{x}_{i}^{\prime T} \mathbf{F} \mathbf{x}_{\mathbf{i}}=0 \quad$ for any pair of corresponding points x_{1} and x_{1}^{\prime} in the 2 images
- The equation for a pair of points
$(x, y, 1)$ and $\left(x^{\prime}, y^{\prime}, 1\right)$ is: $x^{\prime} x f_{11}+x^{\prime} y f_{12}+x^{\prime} f_{13}+$
$+y^{\prime} x f_{21}+y^{\prime} y f_{22}+y^{\prime} f_{23}+$
- For n point matches: $\quad+x f_{31}+y f_{32}+f_{33}=0$
$\mathbf{A} \mathbf{f}=\left[\begin{array}{ccccccccc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x_{n}^{\prime} x_{n} & x_{n}^{\prime} y_{n} & x_{n}^{\prime} & y_{n}^{\prime} x_{n} & y_{n}^{\prime} y_{n} & y_{n}^{\prime} & x_{n} & y_{n} & 1\end{array}\right] \mathbf{f}=0$

Normalized 8-Point Algorithm [Hartley, 1995]

1. Normalization: Center the image data at the origin and scale it so the mean squared distance between the origin and the data points is 2 pixels: $q_{i}=T p_{i}$ and $q_{i}^{\prime}=T^{\prime} p_{\prime}^{\prime}$
2. Solve linear system to compute F from conjugate pairs q_{i} and q_{i}^{\prime}
3. Enforce rank-2 constraint by finding closest singular F^{\prime} to F
4. Denormalization: Output $\mathrm{F}=T^{\top} \mathrm{F}^{\prime} T$

Projective Reconstruction Theorem

- Assume we determine matching points x_{i} and x^{\prime}. Then we can compute a unique fundamental matrix F
- The camera matrices M, M^{\prime} cannot be recovered uniquely
- Thus the reconstruction $\left(X_{i}\right)$ is not unique
- There exists a projective transformation H such that

$$
X_{2, i}=H X_{1, i,} \quad M_{2}=M_{1} H^{-1} \quad M_{2}^{\prime}=M_{1}^{\prime} H^{-1}
$$

Projective Reconstruction Theorem
(Consequences)

- We can compute a projective reconstruction of a scene from 2 views based on image correspondences alone
- We don't have to know anything about the calibration or poses of the cameras
- The true reconstruction is within a projective transformation \mathbf{H} of the projective reconstruction: $\mathbf{X}_{2 \mathrm{i}}=\mathbf{H} \mathbf{X}_{1 \mathrm{i}}$

Stratified Reconstruction

- Begin with a projective reconstruction
- Refine it to an affine reconstruction
- Parallel lines are parallel; ratios along parallel lines are correct
- Reconstructed scene is then an affine transformation of the actual scene
- Then refine it to a metric reconstruction
- Angles and ratios are correct
- Reconstructed scene is then a scaled version of actual scene

3D Scene Reconstruction: Basic Stereo Algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows
Finding correspondences is relatively easy when baseline is small

State of the Art in 3D Reconstruction (Structure from Motion)

- M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch, Visual modeling with a handheld camera, Int. J. Computer Vision 59(3), 2004
- M. Pollefeys and L. Van Gool. From images to 3D models, Comm. ACM 45(7), 2002

Wide Baseline Matching

- Camera networks usually have cameras that are far apart, making correspondence problem very difficult
- Feature-based approach: Detect feature points in both images

Matching with Features

- Detect feature points in both images
- Find corresponding pairs

Matching with Features

- Problem 2:
\square For each point correctly recognize the corresponding one

[^0]
Properties of an Ideal Feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation)
- Invariant (or covariant) to many kinds of geometric and photometric transformations
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature
- Distinctive: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Accurate: precise localization
- Efficient: close to real-time performance

Applications

- Recognition of specific objects

Rothganger et al. '03
Lowe et al. ‘02
Ferrari et al. '04

Applications

- Wide baseline matching without scene segmentation

Applications

- Object class recognition
\square Bag-of-Word models
\square Constellation (graph) models

Recent Work on Feature Detectors

- Hessian
- Harris
- Lowe: SIFT (DoG)
- Mikolajczyk \& Schmid: Hessian/Harris-Laplacian/Affine
- Tuytelaars \& Van Gool: EBR and IBR
- Matas: MSER
- Kadir \& Brady: Salient Regions
- Others

Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in response

Harris Detector: Basic Idea

Harris Detector: Mathematics

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Change of intensity for the shift $[u, v]$:

Window function $w(x, y)=$
 or

1 in window, 0 outside

Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

- Algorithm:
\square Find points with large corner response function R
($R>$ threshold)
\square Take the points of local maxima of R (for localization)

Scale Invariant Detection

- Consider regions (e.g., circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Scale Invariant Detection

- Solution:
\square Design a function on the region (circle) that is "scale invariant," i.e., the same for corresponding regions, even if they are at different scales

Example: Average intensity. For corresponding regions (even of different sizes) it will be the same

- For a point in one image, we can consider it as a function of region size (circle radius)

Scale Invariant Detection

- A "good" function for scale detection has one stable sharp peak

- For many images: a good function would be a one that responds to contrast (sharp local intensity change)

Lowe's SIFT (DoG) Detector

- Difference-of-Gaussian (DoG) as approximation of the Laplacian-of-Gaussian (LoG)

Scale Invariant Detectors

- Harris-Laplacian ${ }^{1}$ Find local maxima of: \square Harris corner detector in space (image coordinates) \square Laplacian in scale

- SIFT keypoints ${ }^{2}$

Find local extrema of:

- Difference of Gaussians in space and scale

K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points," ICCV 2001 ${ }^{2}$ D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints," IJCV, 2004

Lowe's SIFT (DoG) Detector

- Difference-of-Gaussians as approximation of the Laplacian-of-Gaussian

Affine Invariant Dection: Mikolajczyk's Harris-Affine Detector

- Initialization with Harris Laplace
- Estimate shape based on second moment matrix

■ Use normalization / deskewing

- Iterative algorithm

Affine Invariant Detection: Mikolajczyk's Harris-Affine Detector

1. Detect multi-scale Harris points
2. Automatically select the scales
3. Adapt affine shape based on second order moment matrix
4. Refine point location

Quantitative Comparisons of Feature Detectors

- Evaluation of interest point detectors, C. Schmid, R. Mohr and C. Bauckhage, Int. J. Computer Vision 37(2), 2000
- Scale and affine invariant interest point detectors, K. Mikolajczyk and C. Schmid, Int. J. Computer Vision 60(1), 2004
- A comparison of affine region detectors, K. Mikolaiczyk, T Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, Int. J. Computer Vision 65(1/2), 2005

A survey on local invariant features, T. Tuytelaars and K. Mikolajczyk

- Evaluation on 3D objects (Moreels \& Perona, ICCV, 2005)
- Evaluation on 3D objects (Fraundorfer \& Bischof, ICCV, 2005)

\qquad

Evaluation Criterion: Repeatability

- Repeatability rate: percentage of correctly corresponding points

$$
\text { repeatability }=\frac{\text { \#correspondences }}{\# \text { detected }} \cdot 100 \%
$$

Descriptors Invariant to Rotation

- Find local orientation

Dominant direction of gradient:

- Compute description relative to this orientation
${ }^{1}$ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ${ }^{2}$ D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

SIFT Keypoint Feature Descriptor

- Descriptor overview:

Compute gradient orientation histograms on 4×4 neighborhoods elative to the keypoint orientation using thresholded image gradients from Gaussian pyramid level at keypoint's scale
Quantize orientations to 8 values
$\square 2 \times 2$ array of histograms
\square SIFT feature vector of length $4 \times 4 \times 8=128$ values for each keypoint
\square Normalize the descriptor to make it invariant to intensity change

D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints," IJCV 2004

SIFT: Select Canonical Orientation

- Compute histogram of local gradient directions computed at selected scale of Gaussian pyramid in neighborhood of a keypoint
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

SIFT - Scale Invariant Feature Transform ${ }^{1}$

- Empirically found ${ }^{2}$ to show very good performance, invariant to image rotation, scale, intensity change, and to moderate affine transformations

Scale $=2.5$
Rotation $=45^{\circ}$

${ }^{1}$ D.Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," IJCV 2004
${ }^{2}$ K.Mikolajczyk, C.Schmid, "A Performance Evaluation of Local Descriptors," CVPR 2003

References on Feature Descriptors

Feature Detection and Description Summary

- Stable (repeatable) feature points can be detected regardless of image changes
- A performance evaluation of local descriptors, K. Mikolajczyk and C. Schmid, IEEE Trans. PAMI 27(10), 2005
- Evaluation of features detectors and descriptors based
\square Scale: search for correct scale as maximum of an appropriate function
\square Affine: approximate regions with ellipses
- Invariant and distinctive descriptors can be computed
\square Invariant moments
\square Normalizing with respect to scale and affine transformation
- Limited affine invariance for large viewpoint changes; no projective invariant methods
■ Incorporate color, texture into descriptor

[^0]: We need a reliable and distinctive descriptor

