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Epipolar Geometry, 
Feature Detection, 
and Feature Matching

Multi-View Geometry

Different views of a scene are not unrelated
Relationships exist between two, three and more 
cameras

Question: Given an image point in one image, how 
does this restrict the position of the corresponding 
image point in another image?

Reference:  R. Hartley and A. Zisserman, Multiple 
View Geometry in Computer Vision, Cambridge 
University Press, 2000

1. Correspondence geometry: Given an image point x in 
the first view, how does this constrain the position of the 
corresponding point x´ in the second image?

2. Camera geometry (motion): Given a set of corresponding 
image points {xi ↔x´i}, i=1,…,n, what are the cameras P and 
P´ for the two views?

3. Scene geometry (structure): Given corresponding image 
points xi ↔x´i and cameras P, P´, what is the position of 
(their pre-image) X in the 3D world?

Three Questions

Applications:  Stereopsis, 3D scene reconstruction, 
making panoramic images, structure from motion

Multi-View Stereo
[Fitzgibbon and Zisserman, 1998]
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Modeling Camera Projection

The coordinate system
Pinhole camera model as an approximation
Put the pinhole (aka optical center, center of 
projection) at the origin
Put the image plane (projection plane) in front of 
the optical center

Projection equation

The projection matrix models the cumulative effect of all parameters
Useful to decompose into a series of operations
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Camera Parameters
A camera is described by several parameters

Translation T of the optical center from the origin of world coords
Rotation R of the image plane
focal length f, principle point (x´c, y´c), pixel size (sx, sy)
blue parameters are called “extrinsics,”  red are “intrinsics”

Epipolar Geometry

Co-Planarity Constraint: C, C´, x, x´ and X are co-planar

Epipolar Geometry

What if only C, C´, and x are known?
Answer: x´ constrained to lie on epipolar line l´
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Epipolar Geometry

All points on π project onto epipolar lines l and l´

Epipolar Geometry

Family of planes π and lines l and l´ intersect in epipoles e and e´

Epipolar Geometry
epipoles e, e´
= intersection of baseline with image plane 
= projection of optical center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)

• Correspondence geometry: Given an 
image point x in the first view, how does 
this constrain the position of the 
corresponding point x´ in the second 
image?

• Epipolar geometry constrains search 
for x´ from 2D to 1D
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Example:  Converging Cameras Example:  Parallel Cameras

Example:  Forward Motion

e

e’

Computing the Epipolar Geometry

Given a scene point, define it in terms of 2 
vectors wrt left and right cameras

Co-planarity constraint:  P, P´ and t are co-
planar, so their mixed product = 0
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Calibrated Camera
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Properties of Fundamental and 
Essential matrices

Matrix is 3 x 3

Transpose: If F is fundamental matrix of cameras (P, P′), then
FT is fundamental matrix of camera (P′,P)

Epipolar lines: Think of p and p′ as points in the projective plane.  
Then F p is projective line in the right image.
That  is l′=F p     l = FT p′

Epipoles: Since for any p the epipolar line   l′=F p  contains the 
epipole e′, so (e’T F) p=0  for all p.  Thus  e’T F=0   and F e =0

Essential matrix, E

Encodes information on the extrinisic camera 
parameters only
E is of rank 2, since S has rank 2 (and R has full 
rank)
Has only 5 degrees of freedom:  3 for rotation, 2 
for translation (t can only be recovered up to a 
scale factor, meaning only the direction of 
translation can be obtained)
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Fundamental matrix, F

F is the unique 3x3 rank 2 matrix that satisfies 
x′TFx=0 for all x↔x′
Encodes information on the intrinsic and 
extrinsic camera parameters 
F is of rank 2, since S has rank 2 (R and M and 
M′ have full rank)
Has 7 degrees of freedom                                
(There are 9 elements, but scaling is not 
significant and det F = 0)

Normalized 8-Point Algorithm  [Hartley, 1995]

1. Normalization:  Center the image data at the 
origin and scale it so the mean squared 
distance between the origin and the data 
points is 2 pixels:  qi = Tpi and q′I = T′p′I

2. Solve linear system to compute F from 
conjugate pairs qi and q′i

3. Enforce rank-2 constraint by finding closest 
singular F′ to F

4. Denormalization:  Output F = TTF′T′
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Projective Reconstruction Theorem

Assume we determine matching points xi
and x′i. Then we can compute a unique 
fundamental matrix F
The camera matrices M, M′ cannot be 
recovered uniquely
Thus the reconstruction (Xi) is not unique
There exists a projective transformation H 
such that
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3D Scene Reconstruction:  Basic Stereo Algorithm

For each epipolar line

For each pixel in the left image
• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows
Finding correspondences is relatively easy when baseline is small

State of the Art in 3D Reconstruction 
(Structure from Motion)

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. 
Cornelis, J. Tops, R. Koch, Visual modeling with a hand-
held camera, Int. J. Computer Vision 59(3), 2004

M. Pollefeys and L. Van Gool. From images to 3D 
models, Comm.  ACM 45(7), 2002

M. Pollefeys and L. Van Gool, 3D from Video
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Wide Baseline Matching
• Camera networks usually have cameras that are far 
apart, making correspondence problem very difficult

• Feature-based approach:  Detect feature points in 
both images

Matching with Features

• Detect feature points in both images

• Find corresponding pairs

Matching with Features

Problem 1:

Detect the same point 
independently in both images

no chance to match!

We need a repeatable detector

Matching with Features

Problem 2:

For each point correctly recognize 
the corresponding one

?

We need a reliable and distinctive descriptor
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Properties of an Ideal Feature
Local: features are local, so robust to occlusion and clutter 
(no prior segmentation)

Invariant (or covariant) to many kinds of geometric and 
photometric transformations

Robust: noise, blur, discretization, compression, etc. do not 
have a big impact on the feature

Distinctive: individual features can be matched to a large 
database of objects

Quantity: many features can be generated for even small 
objects
Accurate: precise localization

Efficient: close to real-time performance

Applications

Wide baseline matching without scene 
segmentation

Applications

Recognition of specific objects

Rothganger et al. ‘03 Lowe et al. ‘02 Ferrari et al. ‘04

Applications

Object class 
recognition

Bag-of-Word 
models
Constellation 
(graph) models
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Recognition of object classes
Bag-of-visual-words image representation:

Visual word

co
un

t

Recent Work on Feature Detectors

Hessian
Harris
Lowe:  SIFT (DoG)
Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine
Tuytelaars & Van Gool: EBR and IBR
Matas: MSER
Kadir & Brady: Salient Regions 
Others

Harris “Corner”/Interest Point 
Detector

C. Harris, M. Stephens, “A Combined Corner and Edge Detector,” 1988

Basic Idea

We should easily recognize the point by 
looking through a small window
Shifting a window in any direction should 
give a large change in response
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Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

Harris Detector: Mathematics
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Change of intensity for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Harris Detector: Mathematics
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where M is a 2 × 2 matrix computed from image derivatives:

Harris Detector: Mathematics
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Intensity change in shifting window:  eigenvalue analysis

λ1,  λ2  – eigenvalues of M

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const
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Selecting Good Features

λ1 and  λ2 both large

Selecting Good Features

large λ1, small λ2

Selecting Good Features

small λ1, small λ2

Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 both large,

λ1 ~ λ2;

E increases in all 
directions

λ1 and λ2 are small;

E is almost constant 
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of 
image points using 
eigenvalues of M:
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Harris Detector: Mathematics

Measure of corner response:

( )2
det traceR M k M= −

1 2

1 2

det

trace

M

M

λ λ
λ λ

=
= +

k is an empirically-determined constant; e.g., k = 0.05

Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge”

“Edge”

“Flat”

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region

R > 0

R < 0

R < 0|R| small

Harris Detector

Algorithm:

Find points with large corner 
response function  R
(R > threshold)

Take the points of local maxima of 
R (for localization)

Harris Detector:  Example
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Harris Detector:  Example
Compute corner response R

Harris Detector:  Example
Find points with large corner response:  R > threshold

Harris Detector:  Example
Take only the points of local maxima of R

Harris Detector:  Example
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Harris Detector:  Example

Interest points extracted with Harris (~ 500 points)

Harris Detector:  Example

Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e., eigenvalues) 
remains the same

Corner response R is invariant to image rotation

Harris Detector Properties:  Scale Changes

But not invariant to image scale

Fine scale:  All points will 
be classified as edges

Coarse scale: Corner
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Harris Detector:  Some Properties

Quality of Harris detector for different scale 
changes

Repeatability rate:
# correct correspondences
# possible correspondences

C. Schmid et al., “Evaluation of Interest Point Detectors,” IJCV 2000

Scale Invariant Detection

Consider regions (e.g., circles) of different 
sizes around a point
Regions of corresponding sizes will look the 
same in both images

Scale Invariant Detection

Problem:  How do we choose corresponding 
circles independently in each image?

Scale Invariant Detection
Solution:

Design a function on the region (circle) that is “scale 
invariant,” i.e., the same for corresponding regions, 
even if they are at different scales

Example: Average intensity. For corresponding 
regions (even of different sizes) it will be the same

scale = 1/2

– For a point in one image, we can consider it as a 
function of region size (circle radius)

f

region size

Image 1 f

region size

Image 2
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Scale Invariant Detection
Common approach:

scale = 1/2

f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation:  Region size, for which the maximum is 
achieved, should be invariant to image scale

s1 s2

Important: This scale invariant region size 
is found in each image independently!

Automatic Scale Selection

)),((
1

σxIf
mii …

Lindeberg et al., 1996

Automatic Scale Selection

)),((
1

σxIf
mii …

Function responses for increasing scale 
Scale trace (signature)

Automatic Scale Selection

)),((
1

σxIf
mii …

Function responses for increasing scale 
Scale trace (signature)
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Automatic Scale Selection
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Automatic Scale Selection
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Automatic Scale Selection
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Automatic Scale Selection

Normalize: rescale to fixed size
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Scale Invariant Detection

A “good” function for scale detection has one 
stable sharp peak

For many images: a good function would be 
a one that responds to contrast (sharp local 
intensity change)

f

region size

bad

f

region size

bad

f

region size

Good !

Scale Invariant Detectors

Harris-Laplacian1

Find local maxima of:
Harris corner detector in 
space (image coordinates)
Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points,” ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV, 2004

scale

x

y

← Harris →

←
L

ap
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 →

• SIFT keypoints2

Find local extrema of:
– Difference of Gaussians in 

space and scale

scale

x

y

← DoG →

←
D

oG
→

Lowe’s SIFT (DoG) Detector

Difference-of-Gaussian (DoG) 
as approximation of the 
Laplacian-of-Gaussian (LoG)

- =

Lowe’s SIFT (DoG) Detector
Difference-of-Gaussians as approximation 
of the Laplacian-of-Gaussian

σ

σ

Original image

4

1

2=σ

sampling with step 
σ4 =2
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list of
(x, y, σ)

Lowe’s SIFT (DoG) Detector

Affine Invariant Detection

Previously we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:
Affine transform (rotation + scale + skew)

Affine Invariant Dection:
Mikolajczyk’s Harris-Affine Detector

Initialization with Harris Laplace
Estimate shape based on second moment matrix

Use normalization / deskewing
Iterative algorithm
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Affine Invariant Detection:
Mikolajczyk’s Harris-Affine Detector

1. Detect multi-scale Harris points
2. Automatically select the scales

3. Adapt affine shape based on second order moment matrix
4. Refine point location

Harris-Affine

Affine Invariant Detection:
Tuytelaars’s Intensity-based Regions
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max(

)(
)(
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0

d
t

dtIIabs

IIabs
tf

∫ −
−=

1. Select intensity extrema
2. Consider intensity profile along rays from each extremum point 
3. Select maximum of invariant function f(t) along each ray
4. Connect all local maxima
5. Compute geometric moments of orders up to 2 for this region
6. Fit an ellipse 

f

points along the ray

Intensity-based Regions
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Quantitative Comparisons of 
Feature Detectors

Evaluation of interest point detectors, C. Schmid, R. Mohr and C. 
Bauckhage, Int. J. Computer Vision 37(2), 2000

Scale and affine invariant interest point detectors, K. Mikolajczyk
and C. Schmid, Int. J. Computer Vision 60(1), 2004

A comparison of affine region detectors, K. Mikolajczyk, T. 
Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. 
Kadir and L. Van Gool, Int. J. Computer Vision 65(1/2), 2005

A survey on local invariant features, T. Tuytelaars and K. 
Mikolajczyk

Evaluation on 3D objects (Moreels & Perona, ICCV, 2005)

Evaluation on 3D objects (Fraundorfer & Bischof, ICCV, 2005)

Evaluation Criterion:  Repeatability
Repeatability rate:  percentage of correctly 
corresponding points

%100
detected#

encescorrespond#
ityrepeatabil ⋅=

Repeatability Feature Point Descriptors
We know how to detect points
Next question:     How to match them?

?

Point descriptor should be:
1. Invariant
2. Distinctive
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Descriptors Invariant to Rotation

Find local orientation

Dominant direction of gradient:

Compute description relative to this orientation

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

SIFT:  Select Canonical Orientation

Compute histogram of local 
gradient directions computed 
at selected scale of 
Gaussian pyramid in 
neighborhood of a keypoint
Assign canonical orientation 
at peak of smoothed 
histogram

Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π

SIFT Keypoint Feature Descriptor
Descriptor overview:

Compute gradient orientation histograms on 4 x 4 neighborhoods, 
relative to the keypoint orientation using thresholded image 
gradients from Gaussian pyramid level at keypoint’s scale
Quantize orientations to 8 values
2 x 2 array of histograms
SIFT feature vector of length 4 x 4 x 8 = 128 values for each 
keypoint
Normalize the descriptor to make it invariant to intensity change

D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV 2004

SIFT – Scale Invariant Feature Transform1

Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, 
and to moderate affine transformations

1 D.Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV 2004
2 K.Mikolajczyk, C.Schmid, “A Performance Evaluation of Local Descriptors,” CVPR 2003

Scale = 2.5
Rotation = 450
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References on Feature Descriptors

A performance evaluation of local descriptors, K. 
Mikolajczyk and C. Schmid, IEEE Trans. PAMI 27(10), 
2005

Evaluation of features detectors and descriptors based 
on 3D objects, P. Moreels and P. Perona, Int. J. 
Computer Vision 73(3), 2007

Feature Detection and Description Summary
Stable (repeatable) feature points can be 
detected regardless of image changes

Scale: search for correct scale as maximum of an 
appropriate function
Affine: approximate regions with ellipses

Invariant and distinctive descriptors can be 
computed

Invariant moments
Normalizing with respect to scale and affine 
transformation

Limited affine invariance for large viewpoint 
changes; no projective invariant methods
Incorporate color, texture into descriptor


