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ABSTRACT 

An automatic object tracking and video summarization 
method for multi-camera systems with a large number of 
non-overlapping field-of-view cameras is explained. In this 
framework, video sequences are stored for each object as 
opposed to storing a sequence for each camera. Object- 
based representation enables annotation of video segments, 
and extraction of content semantics for further analysis. We 
also present a novel solution to the inter-camera color cali- 
bration problem. The transitive model function enables ef- 
fective compensation for lighting changes and radiometric 
distortions for large-scale systems. After.initial calibration, 
objects are tracked at each camera by background subtrac- 
tion and mean-shift analysis. The correspondence of ob- 
jects between different cameras is established by using a 
BayeSian Belief Network. This framework empowers the 
user to get a concise response to queries such as “which lo- 
cations did an object visit on Monday and what did i t  do 
there?” 

1. INTRODUCTION 

The nature of single-camera single-room architecture multi- 
camera surveillance applications demands automatic and ac- 
curatecalibration, detection of object of interest, tracking, 
fusion of multiple modalities to solve inter-camera corre- 
spondence problem, easy access and retrieving video data, 
capability to make semantic query, and effective abstrac- 
tiowof video content. Although several multi-camera se- 
tups have been adapted for 3D vision problems, the non- 
overlapping camera systems have not investigated thoroughly. 
In 121, a multi-camera system that uses a Bayesian network 
to combine multiple modalities is proposed. Among these 
modalities, the epipolar, homography, and landmark infor- 
mation assume any pair of cameras in the system has an 
overlapping field-of-view. Due to  this assumption, it is not 
applicable to the single-camera single-room architecture. 

A major problem of multi-camera systems is the color 
calibration of cameras. In the past few years, many algo- 
rithms were developed to compensate for radiometric mis- 
matches. Most approaches use registered images of a uni- 
formly illuminated color chart of a known reflectance taken 
under different exposure settings as a reference [I], and esti- 

Fig. 1. A multi-camera setup can contain several cameras 
working under different lighting conditions. 

mate the parameters of a brightness transfer function. Often, 
they assume the function is smooth and polynomial. How- 
ever, uniform illumination conditions may not be possible 
outside of a controlled environment. 

In this paper, we designed a framework where we can 
extract the object-wise semantics from a non-overlapping 
field-of-view multi-camera system. This framework has four 
main components: camera calibration. automatic tracking, 
inter-camera data fusion, and query generation. We de- 
veloped an object-based video content labeling method to 
restructure the camera-oriented videos into object-oriented 
results. We also propose a summarization technique using 
the motion activity characteristics of the encoded video seg- 
ments to provide a solution to the storage and presentation 
of the immense video data. To solve the calibration prob- 
lem, we developed a correlation matrix and dynamic pro- 
gramming based method. We use color histograms to deter- 
mine inter-camera radiometric mismatch. Then, a minimum 
cost path within the correlation matrix is found using dy- 
namic programming. This path is projected onto diagonal 
axis to  obtain a model function that can transfer one his- 
togram to other. In addition, we use a novel distance metric 
to determine the object correspondences. 

2. RADIOMETRIC CALIBRATION 

A typical indoor surveillance system consists of several non- 
overlapping view of cameras as illustrated in Fig. 1. Usu- 
ally, such systems consist of identical cameras that are oper- 
ating under various lighting conditions, or different cameras 
that have dissimilar radiometric characteristics. Even iden- 
tical cameras, which have the same optical properties and 
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Fig. 3. Relation between the minimum cost path and f ( j ) .  
Fig. 2. After computing correlation matrix, a minimum cost 
path is found and transformed to a model function. Using 
the model function obtained in the calibration stage, the out- 
put of one camera is compensated. 

( camera  - 1) (camera - 2) (compensated) are working under the same lighting conditions, may not 

acquired under these variants show color dissimilarities. As 
a result, the correspondence, recognition, and other related 
computer vision tasks become more challenging. 

We compute pair-wise inter-camera color model func- 

match in their color responses. Images of the same object .̂  
~~ 
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lions that transfer the color histogram response of one cam- 
era to the other as illustrated in Fig. 2 in the initial calibra- 
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tion stage. First, we record images of the identical objects 
for each camera. For the images of an object for the cur- 
rent camera pair 1-2, ZLz, we find color histograms hk, 
hi. A histogram, h, is a vector [h[O], . . . , h[N] ]  in which 
each bin hjn] contains the number of pixels corresponding 
to the color range. Using the histograms h i ,  h:, we com- 
pute a correlation matrix MLb2 between two histograms as 
the set of positive real numbers that represent the bin-wise 
histogram distances 

"'." ] ( I )  
= [ c11 c12 ... 

C N I  ... C N N  

where each element c,, is a positive real number such that 
cmn = d(hl[m],hz[n]) and d(.) 2 0 is a distance norm. 
Note that, the sum of the diagonal elements represents the 
bin-by-bin distance with given norm d(.).  For example, by 
choosing the distance norm as L z  the sum of the diagonals 
becomes the Euclidean distance of histograms. 

An aggregated correlation matrix M is calculated by 
averaging the corresponding matrices of K image pairs as 
M1s2 = 1/K E:='=, M:'*. Given two histograms and their 
correlation matrix, the question is what is the best align- 
ment of their shapes and how can the alignment be deter- 
mined? We reduce the comparison of two histograms to 
finding the minimum cost path in the matrix MI.'. We 
used dynamic programming and modified Dijkstra's algo- 
r i thmtofindthepathp : {(mo,no),..,(mr,nr)} that has 
the minimum cost from the cI1 to c", i.e. the sum of 
the matrix elements on the path p gives the minimum score 
among all possible routes. We define a cost function for 

Fig. 4. Camera-2 image is compensated using model func. 
(Histogram black camera-I, blue: camera-2, red: compen.) 

the path as g(p;) = c,,,~,"~ where p; denotes the path el- 
ement (m;,n,). We define a mapping i + j from the 
path indices to the projection onto the diagonal of the ma- 
trix M ,  and an associated transfer function f ( j )  that gives 
the distance from the diagonal with respect to the projec- 
tion j. The transfer function is defined as a mapping from 
the matrix indices to real numbers (mi, ni) 3 f (j) such 
that f(j) = Ipi( sin0 as illustrated in Fig. 3. The corre- 
lation distance is the total cost along the transfer function 
d c D ( h l , h z )  = ~ f = ~  Ig(mi,ni)I. 

3. SINGLE-CAMERA TRACKING 

After initial calibration, objects are detected and tracked at 
each camera (Fig. 5). A common approach for detecting a 
moving object for a stationary camera setup is background 
subtraction. The main idea is to subtract the current image 
from a reference image that is constructed from the static 
image pixels during a period of time. We previously de- 
veloped an object detection and tracking method that inte- 
grates a model-based background subtraction with a mean- 
shift based forward tracking mechanism [3]. Our method 
constructs a reference image using pixel-wise mixture mod- 
els, finds changed part of image by background subtraction, 
removes shadows by analyzing color and spatial properties 
of pixels, determines objects, and tracks them in the consec- 
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Fig. 5 .  Single-camera tracking 

utive frames. In background subtraction, we model the his- 
tory of a color channel each pixel by a mixture of Gaussian 
distributions. The reference image is updated by comparing 
the current pixel with the existing distributions. In case the 
current pixel's color value is within a certain distance of the 
mean value of a distribution, the mean value is assigned as 
the background. After background subtraction, we detect 
and remove shadow pixels from the set of the foreground 
pixels. The likelihood of being a shadow pixel is evalu- 
ated iteratively by observing the color space attributes and 
local spatial properties. The next task is to find the'sepa- 
rate objects. To accomplish this, we first remove speckle 
noise, then determine connected regions. and group regions 
into separate objects. We track objects by computing the 
highest gradient direction of color histogram, which is im- 
plemented as a maximization process. This process is iter- 
ated by given the current object histogram extracted from 
the previous frame. 

The tracking results at each camera should be merged to 
determine the global behaviour of objects (6). 

4. INTER-CAMERA CORRESPONDENCE 

Another main issue is the integration of the tracking results 
of each camera to make inter-camera tracking possible. To 
find the corresponding objects in different cameras and in 
a central database of the previous appearances, we evaluate 
the likelihood of possible object matches by fusing the ob- 
ject features such as color. shape, texture, movement, cam- 
era layout, ground plane, etc. Color is the most common 
feature that is widely accepted by object recognition sys- 
tems since it is relatively robust towards the size and ori- 
entation changes. Since adequate level of detail is usually 
not available in a surveillance video, texture and face fea- 
tures does not improve recognition accuracy. Another con- 
cern is the face orientation. Most face-based methods work 
only for frontal images. The biggest drawback of shape fea- 
tures is the sensitivity to the boundary inaccuracies. Using a 
height descriptor will only help if we have the ground plane. 

Fig. 6. Multi-camera surveillance system. 

Fig. 7. Each camera corresponds to a node in the directed 
graph. The links show physical routes between cameras. 
The probability of object movement is represented using the 
transition table. 

There is a strong correlation between camera layout and 
likelihood of the objects appearing in a certain camera after 
they exit from another one. As in Fig.7, we formulate the 
camera system as a Bayesian Belief Network (BBN), which 
is a graphical representation of a joint probability distribu- 
tion over a set of random variables. A BBN is a directed 
graph in which each set of random variable is represented by 
a node, and directed edges between nodes represent condi- 
tional dependencies. In the multi-camera system, each cam- 
era corresponds to a node in the directed graph. The links 
show the physical routes between the cameras. The proba- 
bility of object movement is the elements of the transition 
table. The transition probabilities, that is the likelihood of a 
person moving from the current camera to a linked camera, 
are learned by observing the system. Note that, each direc- 
tion on a link may have different probability, and the total 
incoming and outgoing probability values are equal to one. 
To satisfy the second constrain, some slack nodes that corre- 
spond to the unmonitored entrancelexit regions are added to 
the graph. Initially, there is no object assigned to any node 
of the BBN, the number of objects in the cameras and ob- 
jects in the database are equal to zero. The database keeps 
track of the individual objects. Let an object Oi is detected 
at camera Ci. For each detected new object. a database entry 
is made using its color histogram features. If the object O1 
exits from the camera Ci, then the conditional probability 
Po, (Cj IC,) of the same object will be seen on another cam- 
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era Cj is found by Po,(CjIC;) = P(CjIC,,)..P(C.k(C;) 
where {SI, ..,sk} is the highest probability path from C; 
to Cj on the graph. Because of the dynamic nature of the 
surveillance system the conditional probabilities change with 
time, Po, (Cj,tlC;) = P(Cj,  tlC.I)..P(C,k, t[C;). The 
conditional probabilities are set to erode by time using a pa- 
rameter a < l as P(01,tlC;) = aP(Ol, t  - 1lCi) since 
the object may exit from the system completely (We do  not 
think a multi-camera system should be closed graph). How- 
ever, the probabilities do not become less than a threshold. 

As a new object is detected, it is compared with the ob- 
jects in the database and with the objects that disappeared 
previously. The comparison is based on the color histogram 
similarity and the proposed distance metric. For more than 

-one object correspondence, we select the match as the pair 
(O,,O,) that maximizes P(O,, tlC,)P(O,, tlC,). We 
evaluate the matching for all objects simultaneously instead 
of matching independently to match objects between two 
cameras C; and Cj,  

5. OBJECT BASED QUERIES 

After matchine the ohiects between the cameras, we label (4 - 
each video frame according to the object appearances. This 
enables us to include content semantics in the subsequent 
processes. A semantic scene is defined as a collection of 

Fig. 8. (a) Inquiry system, (b) extracted instances of an ob- 
ject in all three cameras. 

shots that are consistent with respect to a certain semantic, 
in our case, the identities of objects. Since we know camera 
locations and we extracted which objects appeared in which 
video at what time, we can, for instance, query for what an 
object did in a certain time period at a certain location. To 
obtain concise representation of query results, we generate 
an abstract of the query result. The key-frame-based sum- 
mary is a collection of frames that aims to capture all of the 
visual essence of the video except, of course, the motion. In 
[4], we showed that the frame at which the cumulative mo- 
tion activity is half the maximum value is also the halfway 
point for the cumulative increment in information. Thus, we 
select the key frames according to the cumulative function. 

6. DISCUSSION 

able to extract all appearances of the same person in a spec- 
ified time period accurately. We can also count the number 
of different people. 

We presented a novel color calibration method. Unlike 
the existing approaches, our method does not require uni- 
formly illuminated color charts or controlled exposure im- 
age sets. Furthermore, our method can model non-linear, 
non-parametric distortions, and the transitive property makes 
the calibration of large-scale systems much simpler. The 
object-based representation enables us to associate content 
semantics, so we can generate query based summaries. This 
i s  an important functionality to retrieve the target video seg- 
ments from a large database of surveillance video 
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