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Abstract—In this paper we present a new approach for the on-
line calibration of a camera sensor network. This is the first step
towards fully exploiting the potential for collaboration between
mobile robots and static sensors sharing the same network.
In particular we propose an approach for extracting the 3D
pose of each camera in a common reference frame, with the
help of a mobile robot. The camera poses can then be used to
further refine the robot pose or to perform other tracking tasks.
The analytical formulation of the problem of pose recovery is
presented together with experimental results of a six node sensor
network in different configurations.
Index Terms—Sensor Networks, Cooperative Localization,

Camera Calibration.

I. INTRODUCTION
As cameras are becoming common in public areas they

are becoming a powerful information source that can be
exploited by autonomous vehicles. Cameras can be exploited
(or are already in use) for environmental observations (e.g.
near-shore monitoring [1]), surveillance (indoor and/or out-
door), highway traffic monitoring and control, in intelligent
spaces [2], etc. In most cases though, the cameras are placed
in locations that are convenient for human operators with
little consideration for their use by an autonomous mobile
robot. Furthermore, the exact location and orientation (3D
pose) of these cameras usually is not even known with
respect to the vehicle’s frame of reference. In some cases,
even the coarse position of such cameras may not be known
(i.e. during the setup process). By establishing a common
reference coordinate system for all the cameras in a network,
as well as for mobile robots moving in the same environment,
we can leverage the respective advantages of both the robots
and the emplaced sensors. With the introduction of mobile
robots in a variety of roles (cleaning, vacuuming, surveillance,
environmental condition monitoring) even preexisting surveil-
lance cameras emplaced for other purposes can be utilized
to improve robot pose estimation and contribute additional
sensory input. As sensor networks (camera based or not) are
being used for other tasks, our methodology can be employed
for rapid deployment and automatic calibration of the system
and also to provide tune-ups and recalibration in the face of
changes and/or failures.
In particular herewith we present our approach for collab-

oration in a multi-sensor/multi-robot network. In the current
experiments reported here, a network of wireless and wired
cameras dispersed in the environment (two adjoined labora-
tories) in unknown positions with no overlapping fields of
view is employed (see Fig. 1). A mobile robot equipped with
a calibration pattern navigates through free space and stops
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Fig. 1. Three wireless camera nodes and the mobile robot with the target.

every time it passes through a camera’s field of view. After
obtaining a number of images the internal and the external
parameters [3] of the camera are estimated. Finally, the 3D
pose of the camera is recovered as a function of the pose of
the robot for each of the images taken.

In our approach we consider the following illustrative
scenario: One or more service mobile robots moving in an
indoor environment e. g. an art gallery. A network of security
cameras is already in place and they are connected to the
same network as the robots. The robots move through the
environment performing their tasks (cleaning, maintenance,
monitoring, surveillance, etc.). The robots communicate and
use the cameras in order to augment their environmental
awareness and also to reduce their positioning uncertainty.
The first step toward the realization of the above scenario
is to place the cameras in the same frame of reference as
the mobile robots. To do that the camera’s position and
orientation are estimated in the robot’s world coordinate
frame. In addition, the robots can identify and delineate the
field of view of each camera and add these regions to the map
of the environment. Collaboration among different mobile
robots can be improved by sharing these regions and situating
every robot in a common frame of reference. Every time a
robot enters an area observed by a camera it can update both
its pose and the pose of the camera using standard sensor
fusion techniques (e.g. a KF or a Particle Filter estimator).

In the next Section we discuss related work. Section III
presents an overview of our approach and the necessary co-
ordinate transformations required for the camera localization.
Section IV presents first an overview of our experimental
setup and then experimental results for different robot trajec-
tories in the laboratory. Finally, Section V contains concluding
remarks and discussion of future work.



II. BACKGROUND
In the standard approach to mapping, or mapping and local-

ization (i.e. SLAM) a mobile robot equipped with a sensor
moves through the environment registering the position of
landmarks in the environment [4]. In our work the landmark
is placed on the mobile robot and the sensors are distributed in
fixed positions in the environment. Our approach is suited for
smart environments where the sensors are already in place, or
for the rapid deployment of mixed-capability sensor networks
which can auto-calibrate even though the cameras are far from
one another. An additional advantage of our approach is that
since our landmark is placed on the robot there is no alteration
or defacement of the environment due to the placement of
artificial landmarks, and reduced sensitivity to vandalism, but
we still obtain the efficiencies of manually engineering the
environment.
The problem of camera calibration is a well established

area of computer vision [3], [5]. In general, camera calibra-
tion involves both the estimation of intrinsic and extrinsic
parameters associated with the camera, and is most readily
accomplished via the use of synthetic targets. While various
target configurations have been considered, planar patterns
are typically the most convenient. In our approach we use
the algorithm implemented by Bouguet [6] based on previous
work in [7], [8].
Several authors have considered the problem of using

cameras with proximal or overlapping fields of view to
estimate inter-camera geometries [9]–[11]. Makris et al. [10]
proposed learning the topology of the sensor network using
observations of moving targets. Marinakis et al. [12] used
a Monte-Carlo Expectation Maximization approach in order
to infer the topology of a sensor network with minimal-
information observations. The above work placed emphasis
on estimating the connectivity relationships between the re-
gions seen by different cameras, as opposed to the specific
coordinate transformations between camera frames. The prob-
lem of managing large volumes of data in a “Visual Sensor
Network” by controlling the information flow and distributing
some of the computer vision among the nodes (depending on
computing power) is discussed in [13].
More broadly, the problem of tracking or observing a

robot moving using a camera network is related to that of
tracking and observing people [14], [15]. While in princi-
ple one can use people tracking to estimate inter-camera
transformation parameters, the problem is complicated by the
issues of recognition, tracking, rigid deformation and motion
estimation. Since we can rely both on the cooperation of our
targets, as well their internal motion estimates, our problem
is substantially more tractable.
Several authors have also considered the issues that arise

when using a sensor network with known sensor positions to
track a robot as it moves and refines its pose estimate [16],
[17]. In addition, Batalin et al. also consider the iterative
update of both the robot and sensor positions based on laser
range data in two dimensions (although results in [18] are
based on simulation data). Moore et al. [19] proposed a linear-
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Fig. 2. The world (at [0,0,0]), robot (denoted by a circle and a line for the
orientation), target grid (dashed lines G1,G2) and camera (solid lines C1,C2)
coordinate frames. The trajectory of the robot is marked by a dotted line.

time algorithm for localizing the nodes in a sensor network
using range data. Other related work is that of Howard et
al. which uses energy minimization to optimize the poses
in a network of robots [20]. In this work we deal explicitly
with the 3D problem, begin with unknown camera positions,
use only passive vision-based sensing, and only impose weak
visibilty requirements.

III. COOPERATIVE LOCALIZATION IN A

MULTI-ROBOT/MULTI-SENSOR NETWORK
In this section we outline our approach to allowing the

robot to calibrate the sensor network. Note that we neglect
the problem of robot detection by the cameras since, by virtue
of the cooperative target, the detectability of the robot can be
assured (prior work on the synthesis and detection of specially
constructed targets includes but is not limited to [21]–[23]).

A. Coordinate System Transformation
In order to compute the camera positions from the robot’s

path, we compute a transformation from the world coordinate
frame to the target and then to the frame of the camera, by
way of the robot. Fig. 2 presents the trajectory of the robot
(dotted line) as it stops in front of two cameras. The world
coordinate frame is located at [0,0,0]; the robot is displayed
by a circle with a line indicating the forward direction; over
the robot one of the calibration grids attached to the three
plane target is drawn in dashed lines (see Fig. 3 for the target
construction); the camera coordinate frames are also drawn
in solid lines.
The camera frame in world coordinates (Oc

w) can be
computed analytically using Equation 1.
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where Oc
c = [0001]T is the origin of the camera coordinate

system in homogeneous coordinates. Rgc and TT
gc are the

extrinsic parameters returned from the camera calibration
algorithm and represent the coordinate transformation from
the target grid to the camera. The matrices Rgr and TT

gr
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Fig. 3. (a) An image from one of the cameras showing most of the robot and two faces of the target can be seen. The calibration grid coordinate system as
detected by the camera is overlaid to the grid on the right side (red). (b) A top view of the target target. The x and y axes of the robot coordinate frame are
displayed as thick solid arrow lines and the x (or y) and z axes of each of the six grid coordinate frames are displayed as dashed arrow lines, solid thin lines
represent the frame of the target.

specify the coordinate transforms between the origin of the
grid-based coordinate system (see Fig. 3a) and the robot
centered coordinate system; they are manually estimated for
each one of the six grids attached to the robots (see Fig. 3b
for a top view of the arrangements of the grid and the robot
coordinate frames, see also section IV-A). Finally, Rrw and
TT

rw are calculated from the robots pose Pr = [Xr, Yr, θr]T

(Xr, Yr, θr in world coordinates) as follows:

Rrw =

⎡
⎣cos(θr) − sin(θr) 0

sin(θr) cos(θr) 0
0 0 1

⎤
⎦ (2)

Trw = [XrYr0]T (3)

The (x, y, z) coordinate frame associated with the calibration

grid is displayed in Fig. 3a. In this instance the y-axis is
vertical the x-axis is horizontal and the z-axis is facing away
from the grid surface toward the camera. In general the z-
axis always faces toward the camera and the x and y axes
switch between horizontal and vertical. A top view of the
target arrangement can be seen in Fig. 3b.

B. Uncertainty Propagation
The robot pose is modeled using a particle filter. As we saw

in the previous section, the pose of the camera is expressed
as a function of the pose of the robot. After the robot starts
moving, dead reckoning error accumulates and the accuracy
of the robot pose deteriorates. We take advantage of the
kinematic equations relating the robot and camera frames to
compute the camera uncertainties as well.
The accuracy of the pose estimate for every new camera

becomes progressively worse as the robot accumulates more
odometry error. By employing different exploration strate-
gies (see [24]) the robot could alternate between explor-
ing/mapping new cameras and localizing using the cameras
already mapped. The deterioration of the landmark accuracy
is a general problem that plagues all SLAM approaches
that rely on sparse landmarks and is thus unavoidable. It is
worth noting that our approach could be used in parallel with
standard SLAM techniques that utilize the range sensors on
the robot and thus reduce (but not eliminate) the odometric
error.

IV. EXPERIMENTAL RESULTS
A. Experimental Setting

In this paper we use a network of six cameras and modified
Super Scout robots (from Nomadic Technologies). To sim-
plify the vision-based detection and calibration sub-problem,
a custom made three plane target was mounted on the robot;
(as in [25]) on each side of every plane a grid pattern was
placed such that from any position around the robot a camera
could see one or two grids (see Fig. 3a).
1) Sensor Network: The sensor network was deployed in

our lab in a variety of configurations for the experiments
reported here. One of our objectives was to develop a sensor
configuration that was a compromise between limited cost,
portability and computing power. Specifically, we are inter-
ested in a network with sufficient processing power per node
to accomplish near-real-time vision and sensor fusion, and
to permit rapid prototyping and program development. As a
result, we have opted for a Linux-based platform based on
conventional processor architecture but with an embedded-
systems, small-form-factor, motherboard. In ongoing work,
we are also examining the integration of these rather capable
nodes in a heterogeneous network that also encompasses
miniaturized less powerful nodes (e.g. Crossbow motes).
Fig. 4 presents two nodes side by side with the cam-

eras and the wireless bridge on top. Each node consists
of a diskless Linux computer with a Celeron/PIII 500MHz
processor and 128MB of RAM. A web-cam with a USB
interface was selected as an inexpensive, readily available
solution. A central computer that provides long-term storage
space for each diskless node and coordinates computation is
used. In the present experiments, the nodes are connected to
the central node using a “star” topology. Connectivity was
provided in two different modes, wired and wireless. The
maximum length of the wired links was 15m. For the wireless
connection we used standard 802.11b/g protocols.
2) Camera Calibration Pattern: A planar checkerboard

pattern (a grid) was used for the calibration and localization
of the cameras. On each face of the three plane target (six
faces) a 7 by 9 grid was attached, each cell of the grid having



Fig. 4. Two sensor node subsystems with a camera and a wireless bridge.

a size of 28.5mm. Two grid patterns can be seen in Fig. 3a
attached to two target planes. It is clear that the choice of the
grid size directly affect the quality of the calibration. Before
performing the experiments with the target mounted robot we
used a large grid (13 by 17 squares, see Fig. 5) as a base of
comparison for the calibration of the internal parameters.
B. Calibration of the Intrinsic Parameters
A lengthy discussion of camera calibration is outside the

scope of this paper we present next a brief overview of the
internal parameters of a camera [3]:

• Focal length: The focal length in pixels is stored in the
2x1 vector fc.

• Principal point: The principal point coordinates are
stored in the 2x1 vector cc.

• Skew coefficient: The skew coefficient defining the angle
among the x and y pixel axes is stored in the scalar αc.

• Distortions: The image distortion coefficients (radial and
tangential distortions) are stored in the 5x1 vector kc.

A set of 10-20 images of the large grid of 13 by 17 cells
(see Fig. 5) was used to calibrate manually the cameras and to
obtain their internal parameters. These parameters are used as
a basis for comparison to the intrinsic parameters recovered
from the images of the smaller grid mounted on the robot.
Table I presents the internal parameters for the two grids

(large for manual and small for automated calibration). Even
though the error is higher for the smaller grid it was low
enough to compare with the odometric error accumulated.

C. Cooperative Localization of one robot and a Visual Sensor
Network
While both the camera configuration and the robot trajec-

tory can be independently modified and both influence the
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Fig. 5. A large grid (13 by 17 squares) used for calibrating the intrinsic
parameters of a sensor node.

TABLE I

TYPICAL CAMERA INTRINSIC PARAMETERS

20 images using the large grid (see Fig. 5). The units are in mm.

Focal Length: fc=[476.19427 475.86057 ]±[1.33583 1.39354]
Principal Point: cc=[191.13565 138.20564 ] ±[1.08906 1.31981]
Skew: αc = [0.00000] ± [0.00000]

angle of pixel axes =90.00000 ±0.00000degrees
Distortion: kc=[0.64126 -2.05749 -0.01727 0.01525 0.0]

±[0.01751 0.17530 0.00229 0.00193 0.0]
40 images using the target from 3 different positions (see Fig. 3).

Focal Length: fc=[487.64314 485.92405 ]±[4.68233 4.15016]
Principal Point: cc=[185.34096 143.34743 ] ±[2.01044 3.08005]
Skew: αc = [0.00000] ± [0.00000]

angle of pixel axes =90.00000 ±0.00000degrees
Distortion: kc=[0.68579 -2.42735 -0.01194 0.00069 0.0]

±[0.02894 0.20148 0.00452 0.00293 0.0]
behavior of the overall system, we confine our experiment
here to an evaluation of the effect of different robot paths
and data acquisition strategies. A variety of experiments
was performed in our laboratory for different placements of
the sensor nodes and for different trajectories. In the next
sections we discuss the localization accuracy of two different
methods for exploiting the robot’s motion. In particular, the
two strategies represent two qualitatively different behavioral
extremes.
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Fig. 6. The trajectory of the robot and the estimated locations of the cameras
using the “dance” scenario.

1) Multiple poses per camera - “dance” scenario: The
first approach is to attempt to compensate for errors that may
arise during image acquisition as a result of imperfections in
the lighting, partial occlusion, specularities, geometric distor-
tion, lens distortion and other factors. While these sources of
error are difficult to predict or quantify, it is often the case that
a new image from a new vantage point may overcome them.
This suggests a data acquisition strategy in which the robot
executes a short “dance” in front of each camera (in practice,
this might also occur while a task was being executed). As
this locally observable path is being executed, multiple images
are acquired. This allows a more refined estimate of the
robots position relative to the camera, but also implies a larger



accumulation of odometry error. Fig. 6 illustrates the effects
of this strategy in a sensor network of six nodes.
Table II presents the standard deviation for the six cameras

along the x,y,z axis and for the three orientations.

TABLE II

VARIABILITIES OF THE CAMERA POSITION ESTIMATES. THE UNITS FOR

σx, σy , σz ARE IN CM; AND FOR σθX
, σθY

, σθZ
ARE IN DEGREES.

Camera id σx σy σz σθX
σθY

σθZ

Camera 1 1.2078 0.7996 0.8099 0.3745 0.3097 0.3133

Camera 2 1.2467 0.8046 0.8587 0.5211 0.5381 0.5495

Camera 3 0.4971 1.4010 1.6303 0.6404 0.2414 0.8013

Camera 4 2.8144 1.5290 1.0550 0.6110 0.6392 0.6452

Camera 5 1.2958 0.6462 0.7289 0.5095 0.3309 0.3362

Camera 6 0.6118 2.3258 1.9296 0.6899 0.2879 0.7997

2) Simple Closed-loop Trajectory: In the second approach
the robot traversed a simple path and had its pose estimated
by every camera exactly once; an image was taken and the
pose of the camera was estimated based on that single image.
In the current implementation the robot stopped to allow
manual intervention while the image was acquired although,
in principle, its trajectory could have continued uninterrupted.
Fig. 7 presents the robot path and the camera locations for 6
cameras. Because only a single image was taken the intrinsic
parameters of each camera where considered known i.e.
calculated in a previous experiment using the dance strategy.
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Fig. 7. A close loop trajectory of the robot and the estimated locations of
the cameras. Camera 1 and 3 are visited twice.

A Particle Filter [26] was used to model and reduce the
odometric uncertainty. Fig. 8 presents the trajectory of the
robot together with 3σ uncertainty ellipses derived from the
particle distribution. When the robot revisits cameras C3 and
C1 (Fig. 8c,e) the observed position of the camera is used to
update the particle weights thus reducing the pose uncertainty
(see Fig. 8e,f respectively).
The inter-camera distances were measured by hand in the

context of the experiments described above and compared
with the automated results. The mean error for twelve mea-
surements was 2.11cm with a standard deviation of 1.08cm.
Our results suggest that the calibration of an embedded

camera system with a cooperating mobile robot is both

practical and efficient. The approach we have examined is
simple enough that diagnostic recalibration can be performed
regularly. The odometric error for the simple trajectory was
smaller as compared to the dance trajectory (less rotations).
That can be easily seen by comparing the uncertainty ellipses
in Fig. 6 and 8b. Although the simple trajectory makes inter-
camera motion estimation easier, the dance trajectory reduces
errors from other sources, as noted above. This suggests that
in some cases simpler trajectories may be preferable. An in-
depth analysis of this trade-off is ongoing, but it appears that
each strategy may have situations in which it proves superior.

V. CONCLUSION

In this paper we have examined the use of cooperative
moving targets in the calibration of a vision-based sensor
network. We show that by using a moving robot we are able
to calibrate a network of cameras whose initial deployment
was completely unknown. The robot carries a conspicuous
calibration target. The camera nodes of the network are based
in single-board computers that are capable of local image
processing and which communicate via TCP/IP.
By taking advantage of the cooperative behavior of the

moving robot, we can obtain inter-camera transformations
far more accurate than those that could be obtained using
only people tracking or other passive means. Further, we
observed that the specific motion control strategy used by the
robot has a substantial bearing on the accuracy of the pose
estimates. By minimizing the accumulation of odometry error
between cameras, the accuracy of the entire network can be
optimized. In addition, as with SLAM systems, an iterative
update strategy may provide even better final pose estimates.
This suggests several avenues for future work. The incorpo-

ration of an active cooperative target in a SLAM-based update
scheme is a natural incremental extension of this work. It may
also be feasible to select path planning strategies that optimize
either the overall network accuracy, or some components of
it. The closed-loop selection of robot behavior to tune the
network calibration is a problem we are currently exploring.
In order to address the noise problems from the camera

distortions, spatial quantization and the odometric uncertainty
we are currently implementing a 3D probabilistic framework
based on an Extended Kalman Filter (EKF) estimator. When
the mobile robot revisits an area observed by the camera
we could use the prior knowledge to reduce the positioning
uncertainty for both the robot and the camera.
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