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Abstract ; In this paper, we propose two new vision-based methods for irzdooi- mobile robot navigation. One is a self- 
localization algorithm using projective invariant and the other is a method for  obstacle detection by simple image 
difference and relative positioning. Foi- a geometric model of corridor erzvironnaent, we use natural features formed by 
floor, walls, and door frames. Using the cross-ratios of the features can be effective and robust in building and updating 
model-base, arzd matching. 

We predefine n risk zone witho~it obstacles fo r  a robot, and store the image of the risk zone, which will be used to detect 
obstacles imide the zoize by comparing the stored image with the current image of a new risk zone. The position of the 
robot atad obstacles are determined by relative positioning. 

The robustness and feasibility of OW algorithms have been deinonstrated through experiments in corridor enviroonnaents 
using an indoor mobile robot, KASIRI-II ( m i s t  SImple Roving Intelligence). 

1. INTRODUCTION 

Self-localization and obstacle detection are two basic 
functions for a successful navigation of a mobile robot. 

Among various approaches, vision-based approaches 
have been proven to be very effective and flexible. 
Matsumoto et al.[l] proposed a model of the route, the 
“View-Sequenced Route Representation (VSRR)”, for 
autonomous navigation. A VSRR consists of a sequence 
of view images, which have necessary information for 
localization, steering angle determination and obstacle 
detection. The resolution of the localization was, however, 
about 0.5-lm and it is impractical in case that the rotation 
of camera is larger than about 15 degrees. Kosaka and 
Kak[2] implemented a system for a given environment 
using a CAD model based expectation map. This method 
constructed a complex database and required additional 
analysis for handling uncertainty. 

In most vision-based approaches, databases for 
environments become complex because observed 
geometric properties are not invariant under the projective 
transformation. Thus, matching is also very complex and 
time consuming. Also most approaches require an exact 
calibration. 

We present a new efficient self-localization algorithm, 
which does not need any calibration, using 1-D 

perspective invariant [3, 4, 51 and the relative positioning 
[9]. We detect obstacles by comparing the prestored risk 
zone with a current risk zone. The positions of the 
detected obstacles are also determined by relative 
positioning. 

Our algorithm for navigation in corridors and similar 
indoor environments is based on two basic assumptions 
that the ground plane is flat and two parallel side-lines are 
formed by floor and two side walls. We also assume that 
an environmental map database is available for matching 
between the scene and the model. Intersection points 
between floor and the vertical lines of door frames are 
used as point features to compute cross ratios. As an off- 
line process, we construct a database consisting of the 
cross ratios of point features. Using the cross ratios in the 
constructed database, the correspondences between the 
model and scene features can be found. The corresponding 
point features in the database of a real environment and in 
the image are used to compute the positions of the mobile 
robot and obstacles inside the risk zone. 

We demonstrate the robustness and feasibility of our 
algorithms through experiments in indoor environments 
using an indoor mobile robot. 

The paper is organized as follows: In section 2, we 
explain the basic theory of cross ratio and an error model, 
and relative positioning. In section 3, we explain the 
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model-base construction and hypotheses generation. In 
section 4, we present a self-localization algorithm. In 
section 5, we present a method for obstacle detection and 
pose determination. In section 6, we explain image 
processing algorithms for the extraction of point features 
and vanishing points. In section 7, we present 
experimental results for a typical corridor environment. 

2. BASIC THEORY of PROJECTIVE INVARIANT 

2.1 Projective invariant: Cross-Ratio 
In this section, we review the cross-ratio and present a 

method to determine an error model of the cross-ratio. 
Let (Ql, Q2, Q3, Q4) and (PI, Pz, P3, Pd denote points 

on a line in an object plane and the corresponding points 
on the image plane, respectively. 

XI is the coordinate of QI with respect to an object 
coordinate system and xi is the corresponding coordinate 

of Pi in the camera coordinate system. Then we define the 
cross-ratio,l-D invariant, as follows: 

In Eq.( 1), the cross ratio is a function of four variables : 

For noisy observations, we define a noisy invariant and 
its variation: 

where 6 ,  denotes an independently distributed noise 
term with the mean “0” and the variance ad . 

2.2 Relative Positioning of Detected Obstacles 

as follows: 
Two plane projective invariants on a plane are defined 

where pi and Pi, i=1-5, represent the coordinates of 
points on the image plane and the corresponding points on 

an object plane, respectively. 
We rewrite Eq. (5)  as follows: 

where 

Assume that we want to know the relative position (X5, 
Ys) of an object point with respect to known four object 
points (XI, Yd, (XZ, Yz), (X3, Yd,  and (XI ,  Yd.  If the 
image coordinates of the five points are found, two plane 
projective invariants I1 and I2 can be computed by Eq.(5). 
Therefore, from Eq.(7), the relative position (X5, Ys) is 
uniquely determined. 

3. MODEL-BASE CONSTRUCTION and 
HYPOTHESES GENERATION 

In this section, we explain how to construct a database 
using the cross ratio. Fig.1 shows a top-down view of a 
typical corridor scene. Point features on the left and the 
right wall, which are the intersection points between floor 
and door frames, are represented by LK and RK, 
respectively. 

We compute the cross-ratio E and its variance V( ) 
for a set of point features, ( CK, LIK+, , LIK+*, L1K+3) or 

( R;, R;+, , Ft;+2, R;+3) in a corridor i .  We store {i, 
LEFT or RIGHT, K )  into the entries of a hash table, 
whose range is determined by E +V( 

Given an image, we extract a set of point features and 
compute the cross-ratio for the set. Then, the 
correspondences between the model and the scene features 
are hypothesized by indexing the entries of the hash table 
with a similar cross-ratio. 

). 
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Corridor #1 Corridor #2 Corridor #3 

I 

r 
Fig.1. Scene model to setup a database. 

Fig.2 shows an image and an extracted vanishing point, 
and point features. Table 1 presents the image coordinates 
of point features and a cross-ratio computed from these 
points and the hypotheses generated by the cross-ratio 
value. 

In Table 1, for example, (1, RIGHT, 5 )  means that an 
image feature, denoted as 1 in Fig.2, corresponds to the 
fifth door frame on the RIGHT hand side of corridor 1. 

Fig.2. An image and extracted point features. 

Tablel. Result of a hnotheses aeneration. 

Assume that the virtual robot center is defined by the 
vertical projection of the optical center onto floor. 

In Fig.3, for example, the perspective projection of the 
virtual robot center produces an image point ( x n t ,  yn,) 
on the extended virtual image plane. Perspective 
projection of the virtual robot center provides a unique 
robot attached landmark, which will be used for self- 
localization by the relative positioning. 

the virtual robot center 

Robot Center 

Fig.3 The image coordinate of the lens center. 

From Fig.3, we can derive the relationship between the 
projected point of the virtual robot center (x",, Y , )  and a 
vanishing point ( x i  , Y ,  as: 

f :  s y y ,  = s y y m  : f (8) 
where s, is a scale factor which transforms an image 

Thus, thc coordinate of the projection of the virtual 
coordinate to a metric coordinate. 

robot center on the image plane is 

Now, we can compute the position of the robot by the 
relative positioning, given by Eq. (7). 

We test the self-localization algorithm with an image 
shown in Fig.2. We assume that the correspondences are 
given from the matching process explained in section 3. 
Table 2 shows the image coordinates of the extracted 
vanishing point and point features, and the corresponding 
model coordinates. 

4. S ELF-LOCALIZATIO N 
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For the experiment, we used a camera with f=16 mm 
and s,=O.O013mm and obtained (x,, y,)=(O, 

1070950.5). 
Using the extracted four image points 1, 2, 5, 6 and 

(x, , ,  yn,)  with the corresponding object points, we can 
estimate the object coordinates of (xn,, y,, ) that 
corresponds to the position of the robot in the global 
coordinate system by relative positioning. Table 3 presents 
the estimation result by the proposed method. 

Table3. Result of a self-localization 
I ComuutedValue I Truevalue I 
I (-14.5.437.2) cm I (-5.0.439.0) cm I 

(xm, J” )=(O, 1070950.5) I 
In Eq.(9), if the optical axis of camera is parallel with the 

floor, Y, becomes zero. Thus, Y,= OO. In practice, we can 
assume Y,== with a very small error because fy is very 
large. 

In the case that Y,= 0°, plane projective invariants II and 
12 become : 

Table 4 presents the result of self-localization when 
Y,= *. 

Table4. Result of a self-localization when Y, = 00 

I Comuuted Value I Truevalue I 
I ( -145437.2)  cm I (-5.0.439.0) cm I 
t , I  . I 

Therefore, we can compute the position of robot without 
calibration using a single image. 

5. OBSTACLE DETECTION 

In this section, we present methods for detecting 
obstacles based on image difference between a stored 
reference image and the current input image and 

estimating the position of the detected obstacle with 
respect to extracted features by relative positioning. 

5.1 Detection of Risk Zone 
Fig4 shows a risk zone of the robot. 

Fig.4 The Configuration of Risk Zone. 

Fig5 shows the procedures of an obstacle detection 
algorithm. Fig.S(a)-(d) show the result of risk zone 
extraction. FigS(e) shows the image difference between 
the current risk zone with the risk zone of non-obstacle, 
which is stored previously. Fig.S(f) shows a region of an 
extracted obstacle, bounded by white lines. 

(b) Vanishing point 

(c) Risk zone and point features (d) Reference risk zone 

(e) Difference (0 Corner points 
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Fig.6 shows the extracted point features and the corner 
points of the detected obstacle. Thus, we can obtain 
positions of the obstacle from Eq.(7). 

Fig.6 Extracted point features (1,2,3,4) and two 
corner points of the obstacle(5,6) 

Table 5 presents the image and the corresponding global 
coordinates of the point features obtained by the self- 
localization algorithm, and the image coordinates of the 
corner points of the detected obstacle. Then, we can 
compute the global coordinates of the obstacle from Eq.(7). 
The computed and exact coordinates are given in Table 5. 

Table 5. Result of relative positioning of a 
detected obstacle. 
iPt.1 Image 1 Global 1 

. (Pixal) Coord .( cm) 

6. lMAGE PROCESSING 

We must extract point features to obtain the 
correspondences between the model and the scene using 
the cross ratio. In this paper, we select point features that 
are the intersections between floor and door frames which 
are distinguished landmarks in any corridor environment. 

For detecting the vanishing point, we use the Hough 
transformation method. In order to reduce the computing 
time, we limit the range of the Hough space. We develop a 
method to detect the vanishing point by using the fact that 
the vanishing point is always projected on a constant 
horizontal line on the image plane, although one of two 
parallel lines is only detected. 

Fig.7 shows the extracted vanishing point with left(a), 
right(b), and both(c) of two parallel lines. Fig.8 shows the 

extracted vertical lines for each scene in Fig.7. 

(a) From left line (b) From right line (c) From both lines 
Fig.7 Vanishing point extraction 

(a) From left line (b) From right line (c) From both lines 
Fig3 Vertical lines extraction 

Experiments have been carried out in an indoor corridor 
environment using a mobile robot KASIRI-11. The 
mechanism of KASIRI-I1 consists of wheels for 
conventional running and an infinite path wheel for 
running on unflat floor such as stairs. We use a 585 
pentium as the master controller. It also includes a motion 
control board, a vision processing board(MVB-02), IR 
sensors, servo motors and drivers, and sonars. Fig.9 shows 
the photograph of KASIRI-11. 

(a) Front view (b) Side view 
Fig.9 Photograph of KASIRI-II. 

7.1 Self-focalization 
Fig. 10 shows an experiment scenario for testing the 

accuracy of the self-localization and obstacle detection 
algorithms. The robot is commanded to navigate along the 
center of corridor #I  from Y,=358cm to Y,=1558cm. An 
obstacle, shown in Fig.5, is located at (0, 1380). 
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Start End Corridor #2 

Fig.10 The run region of a mobile robot 

Fig.11 shows the results of the self-localization of the 
mobile robot. 

Fig.11 The result of self-localization 

Fig. 12 shows the error between the true positions, 
measured by a tape measure, and the extracted positions of 
the robot. 

The proposed self-localization algorithm has 
successfully computed the robot positions with a 
maximum error smaller than 20cm. 

Error(cm) 
# of Sampling 

35 +rror of Xcoord. e r r o r  of Y Coord. 

Fig.12 The error of self-localization 

Table 6 shows the result of obstacle detection. The 
error is within 15cm. 

Table 6. Results of obstacle detection 
Measured 

(-2.5,13 73.2) (0,1380) 
-30.3 1376.0 -30, I380 

8. CONCLUSION 

Thus, we could solve the basic problems for navigation 
of a mobile robot in corridor environment by only vision 
system. 

The average computing time in self-localization and 
obstacle detection are 2.08 sec and 1.49 sec on a Pentium 
90MHz, respectively. 

The error of self-localization and the error by relative 
positioning is within 20cm. 
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In this paper, we proposed new vision-based approaches 
for indoor mobile-robot navigation. For self-localization, 
we presented a method using projective invariant to search 
for correspondences. We also presented a method to detect 
obstacles and to determine the relative position of the 
detected obstacles using relative Dositioninn. " L 


