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Abstract 
We address the problem of reconstructing 3D space 

in a projective framework from two views, and the 
problem of artificially generating novel views of the 
scene from two given views. We show that with 
the correspondences coming from four non-coplanar 
points in the scene and the corresponding epipoles, 
one can define and reconstruct (using simple linear 
methods) a projective invariant, referred to as projec- 
t i v e  depth, that can be used later to reconstruct the 
projective or affine structure of the scene, or directly to 
generate novel views of the scene. The derivation has 
the advantage that the viewing transformation matrix 
need not be recovered in the course of computations 
(i.e., we compute structure without motion). 

1 Introduction 

This paper presents a study on the geometric relation 
between objects and their views (perspective and or- 
thographic) geared towards developing tools with ap- 
plications to 3D reconstruction and visual recognition. 
For this purpose we define a new projective invari- 
ant that can be computed from image measurements 
across two views (four corresponding points and the 
epipoles) using simple linear methods. The invariant 
is then used for reconstructing the 3D scene in pro- 
jective or affine space, and for generating novel views 
of the scene/object directly - without going through 
projective coordinates and camera transformation. 

We adopt the projective framework for representing 
3D space as was also done recently by [6, 13, 91. In 
a projective framework the scene is represented with 
respect to a frame of reference of five points whose 
location in space are unknown and can assume ar- 
bitrary general configurations in 3D projective space 
[22]. This allows us to work in a framework that does 
not make a distinction between orthographic and per- 
spective views and does not require internal camera 
calibration, i.e., the internal camera parameters are 
folded into the camera transformations. 

Related to 3D reconstruction is the application to 
visual recognition. The alignment approach to  recog- 
nition ([20], and references therein) is based on the no- 
tion that the geometric relation between objects and 
their images can be used to create an equivalence class 
of images of an object of interest. This approach can 
be realized by storing a few number of “model” views 
(two, for example) and with the help of correspond- 
ing points between the model views and any novel in- 
put view, the object is “reprojected” onto the novel 
viewing position. Recognition is achieved if the re- 
projected image is successfully matched against the 
input image. We refer to the problem of predicting 
a novel view from a set of model views using a lim- 
ited number of corresponding points, as the problem 
of re-projection. 

The problem of re-projection can in principal be 
dealt with via 3D reconstruction of shape and cam- 
era motion. For purposes of stability, however, it 
is worthwhile exploring more direct tools for achiev- 
ing re-projection. Most of the current tools avail- 
able for this purpose assume orthographic projection 
[21, 10, 161. The method of epipolar line intersection 
is a possibility for achieving re-projection under per- 
spective [3, 15, 171 but, however, is singular for cer- 
tain viewing transformations. For example, numeri- 
cal instabilities arise when the centers of projection of 
the three cameras are nearly collinear, or equivalently, 
when the object rotates around nearly the same axis 
for all views. The re-projection methods introduced 
in this paper is not based on an epipolar intersection, 
but rather is based directly on the relative structure of 
the object, and does not suffer from any singularities, 
a finding that implies greater stability in the presence 
of noise. 

We derive a geometric invariant defined by a single 
cross ratio along a ray cutting through the frame of 
reference. We show that the invariant is equal to the 
third projective coordinate, and therefore refer to it 
as projective depth. The invariant can be used later to 
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recover homogeneous coordinates if desired, or used di- 
rectly to achieve re-projection onto a third view. The 
derivation has the advantage that the viewing trans- 
formation need not be recovered in the course of the 
computations - only the projections due to two faces 
of the tetrahedron of reference. The geometric con- 
struction we use requires the projections of four scene 
reference points onto two views, and as the fifth ref- 
erence point we use the camera’s center of projection 
via the epipoles. The epipoles are used both as a fifth 
corresponding pair and a means for determining cor- 
respondences due to projections of various faces of the 
tetrahedron of reference. 

Part of this work originally appeared in [18] describ- 
ing the geometric invariant and its application to re- 
projection, and was derived independently of [6, 13, g]. 
The later stage of reconstructing homogeneous coordi- 
nates given the recovered invariant is inspired by the 
work of [6]. 

2 Projective Framework and Related 
Work 

In a projective framework the location of an object 
point is measured relative to a frame of reference of 
five points (a  tetrahedron and a unit point) whose po- 
sitions in space are unknown and which are allowed 
to map onto any general configuration of five points 
in 3D projective space. It is not difficult to show [19] 
that the space of images we can get ?ut of this frame- 
work are no more than perspective and orthographic 
images of the scene, and images of images of the scene, 
produced by a pin-hole camera in which the camera’s 
coordinate frame is allowed to undergo arbitrary affine 
transformations in space. 

The projective framework enlarges the equivalence 
class of images of an object compared to the metric 
framework, but in return does not require internal 
camera calibration and does not make a distinction be- 
tween orthographic and perspective projections. The 
internal camera parameters (focal length, principal 
point and image coordinates scale factors) are folded 
into the affine transformation of the camera coordi- 
nate frame ([14], for example) and, therefore, can as- 
sume arbitrary values (which can also change from one 
view to another). Orthographic images are included 
in this framework because any of the reference points 
(including the COP) can be anywhere in 3D projec- 
tive space. These features of the projective framework 
imply greater stability in the presence of noise com- 
pared to the metric framework (see [ l ,  5, 4, 171 for 
discussions on the performance of metric structure- 
from-motion in the presence of noise). 

Projective space can be represented by homoge- 
neous or non-homogeneous coordinates. In a non- 
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Figure 1: A non-homogeneous representation of space. 
The points 0, U,  V ,  W define the tetrahedron of refer- 
ence. The point P, is at the intersection of the plane 
PVW with the x-axis (the line OU). The point T, 
is similarly constructed by replacing P with the unit 
point T (not shown in the drawing). The z coordinate 
of P is defined as the cross ratio of O,T,, P,, U (see 
[=I, PP. 191). 

homogeneous representation a point P is represented 
by three cross ratios along three axes of the tetrahe- 
dron of reference (see Figure 1) .  A homogeneous rep- 
resentation is a tetrad (2, y, z ,  2 )  of coordinates which 
is typically realized by assigning the standard coor- 
dinates ( O , O , O ,  l) ,  (l ,O, O , O ) ,  (0 ,1 ,0 ,0 ) ,  (O,O, 1,O) and 
(1, 1 ,  1 , l )  to the vertices of the tetrahedron 0, U ,  V ,  W 
and the unit point T ,  respectively (see Figure 2). For 
example, the points with t = 0 are on the plane UVW, 
and the projection of P via 0 is the point with coor- 
dinates (2, y, z,O) (i.e., orthographic projection in co- 
ordinate space). In general, any ordered set of four 
numbers, not all zero, determine uniquely a point in 
space. 

A geometric reconstruction of non-homogeneous co- 
ordinates was recently proposed by Mohr e2 al. [13]. 
The authors use the projections of five scene reference 
points and the epipolar geometry (the “Essential” Ma- 
trix of [12] which is found by matching eight points) to 
determine the projections of the various stages of the 
construction needed to determine the three cross ra- 
tios for each point. The construction is elaborate and 
instead the authors propose and implement a direct 
non-linear algorithm for recovering the camera trans- 
formations between the scene and the two views. 

Faugeras [6] proposes a linear algorithm for recover- 
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Figure 2: Homogeneous coordinates in space. If P is 
any point not on a face of the tetrahedron of refer- 
ence, there exists four numbers 2, y, z ,  t ,  all different 
from zero, such that the projections of P from the 
four vertices (l,O,O,O), (O,l,O,O), (O,O, l ,O), (O,O,O, 1) 
respectively onto their opposite faces 
are ( O , Y , ~ , t ) , ( I , O , ~ , t ) , ( z , y , O , l ) ,  ( I , Y , * , O )  (see [221, 
pp. 194-195). 

ing the camera transformations and the homogeneous 
coordinates. The projections of five scene reference 
points are used to determine each camera transforma- 
tion matrix up to one unknown parameter (a  cam- 
era transformation has 11 parameters and the cor- 
respondence between the reference points and their 
projections add five more unknowns, but produce 15 
linear equations). The epipoles are then used as a 
sixth corresponding pair to fully determine (projec- 
tively speaking) the camera transformations. Once 
the camera transformations are recovered it becomes 
a simple matter to recover the homogeneous coordi- 
nates of any scene point whose projections in both 
views are known. Faugeras then considers the case of 
having four corresponding points instead of five. In 
that case the camera transformations are recovered 
up to four unknown parameters. Once these param- 
eters are set (arbitrarily), then affine reconstruction 
becomes possible. 

In our framework we do not recover the camera 
transformation matrices in order to achieve recon- 
struction. Instead we regard the camera’s center as 
part of the projective reference frame making it nec- 
essary to use only four corresponding points coming 
from the scene. This still enables a projective recon- 
struction, and in addition to achieve an affine recon- 

struction in case the scene undergoes only affine trans- 
formations in space. 

In the next section we derive the projective invari- 
ant and show how it can be computed given projec- 
tions of four scene reference points (four correspond- 
ing points) and the corresponding epipoles. Section 4 
describes the method by which 3D reconstruction is 
achieved given the recovered invariant, and shows that 
the invariant is equal to  1 - z ,  where (2, y, z , t )  are 
the projective coordinates of the scene. Section 5 de- 
scribes two schemes for achieving reprojection, one 
using the invariant directly, and the other using the 
reconstructed structure. Section 6 briefly goes over 
two schemes for recovering the epipoles. Computer 
simulations for testing the stability of the scheme un- 
der noise were conducted and can be found in [18, 171. 

3 The Projective Structure Invariant 
Let the tetrahedron of reference consist of four scene 
points P I ,  ..., P4 and let the fifth reference point be the 
camera’s COP denoted by 0. Let P be an arbitrary 
point of interest, and consider the ray from 0 to P .  As 
illustrated in Figure 3,  the ray -0P intersects the two 
faces PlPzP3 and PZP3P4 at P and P ,  respectively. 
We define oyr projective structure invariant as a cross 
ratio of P,  P ,  P ,  0 ,  denoted by ap: 

-~ P - P  P - 0  
ap =< P, P ,  P , O  >= - . - 

P - P  P-0’ 
where distances are measured along the ray O P .  We 
will use ap for reconstructing the homogeneous coor- 
dinates (I, y, z , t )  of P (and show that ap = 1 - z )  
and for re-projecting P onto novel views, but first we 
describe the way ap can be computed from image mea- 
surements alone. 

In the first view all points along the ray OP project 
onto a single point, denoted by p ,  in the image plane. 
Because internal camera parameters are folded into 
the affine component of camera motion, we can assign 
p = (I, y, 1) where (I, y) are the observed image coor- 
dinates with respect to some image origin (say the g e e  
metric center of the image plane). Consider next a sec- 
ond view of the scene. The points P, p, P, 0 project 
onto generally distinct points denoted by p’, @’, Ij’, U’ 
which are also collinear. Because the two tetrads of 
points are projectively related, we have 

ap =< P, P ,  P ,  0 >=< p ‘ ,  a ,  p’, U’ >, 
and therefore the structure invariant ap can be com- 
puted from the projections onto the second view. The 
projection of 0 onto the second view is the epipole 
U’, and similarly the projection of 0’ (the COP of 
the second camera position) onto the first view de- 
fines the other epipole U ,  and therefore v and U‘ are 
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Figure 3: Projective structure of a scene point P is 
defined with respect to four reference points P I ,  ..., P4 
and the center of projection 0 of the first camera pc- 
sition. The camera’s center serves as the unit point 
in the projective frame of reference instead of a fifth 
scene point. The cross ratio, denoted by ap, of the four 
points P,  p ,  P ,  0 uniquely fixes P with respect to the 
frame of reference. The cr2ss, ratio can be computed 
from the projections of P,  P ,  P ,  0 onto the second im- 
age plane. The projection of 0 is the epipole U’ which 
can be computed from eight corresponding points [6]; 
the other projections 3,  p’ can be recovered using the 
projections of the four reference points and the corre- 
sponding epipoles U ,  U’. Finally, since aP is invariant it 
can be used for re-projection onto a third view and for 
reconstructing the projective structure of the scene. 

corresponding points. We assume for now that the 
epipoles are known, and we will address the prob- 
lem of finding them later (Section 6). The point p’ 
is given to us (as we assume that correspondences be- 
tween the two views has been established, as for exam- 
ple by [16, 17, 2]), and we can assign the coordinates 
p’ = (d,y’, l),  where (z ‘ ,~ ’ )  are the observed image 
coordinates with respect to an arbitrary image origin. 
What is left is to recover the points 6’ and j’. 

In order to determine fi’ and 6’ we must recover 
the projective transformations due to the two faces 
PlPzP3 and PzP3P4, respectively. This can be done 
by identifying four coplanar points on each of the two 
faces, but instead we can make use of the epipoles 
again. For example, we can use the projections 
of P I ,  Pz, P3 onto both views and the corresponding 

epipoles to uniquely recover the 2D projective trans- 
formation A ,  that when applied to p will produce a, 
up to a scale factor. This is expressed in the following 
proposition : 
Proposition 1 A projective trans forma-  
tion, A ,  which is determined f r o m  three arbitrary, non- 
collinear, corresponding points  and the corresponding 
epipoles, i s  a projective transformation of the plane 
passing ihrough the three object points  which project 
onto the corresponding image points .  

Proof: Let p ,  - p j ,  j = 1 , 2 , 3 ,  be three arbitrary 
corresponding points, and let v and v‘ denote the two 
epipoles. First note that the four points p j  and v and 
the corresponding points p: , U’ are the projections of 
four coplanar points in the scene. The reason is that 
the plane defined by the three object points P I ,  P2, P3 
intersects the line 00’ connecting the two centers of 
projection, at a point - regular or ideal. That point 
projects onto both epipoles. The transformation A ,  
therefore, is a projective transformation of the plane 
PI P2P3. Note that A is uniquely determined provided 
that no three of the four points are collinear. 0 

Given the epipoles, therefore, we need just three 
points to determine the correspondences of all other 
points coplanar with the plane passing through the 
three corresponding object points. The transforma- 
tion (collineation) A of the face PlP2P3 is determined 
from the following equations: 

A p ,  = p j p ; ,  
AV = pv‘ ,  

j = 1 , 2 , 3  

where p , p j  are unknown scalars, and A3,3 = 1. One 
can eliminate p ,  p j  from the equations and solve for the 
matrix A from the three corresponding points and the 
corresponding epipoles. This leads to a linear system 
of eight equations (for more details see appendices in 
[14, 171). Similarly, we can solve for the matrix E 
accounting for the projection of the face P2P3P4 from 
the equations below: 

E p j  = pjp;, j = 2 , 3 , 4  
Ev = pv’. 

If we set i;’ = Ap and p’ = E p  (note that @’ and jj’ are 
somewhere along the rays O‘P and O’P, respectively), 
then the cross ratio aP can be computed using the 
linear combination of rays result known in projective 
geometry ([8], for example) as follows: we represent p’ 
and p‘ as linear combinations of U‘ and j’: 

pp’ = v’ + kj’ 
pp‘ = U‘ + k’i;‘, 

then ap = 6 (note that p and k are fully determined, 
and so are p and k’) .  Note that we have made use of 
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the epipoles twice in our derivations. First, is because 
of having 0 as one of our reference points - this by 
definition brings the epipoles into the picture. Sec- 
ond, the epipoles were used in order to determine the 
image correspondences due to two faces of the tetra- 
hedron of reference. Without the epipoles we would 
have needed an extra point on each face, hence loosing 
some generality because some of the reference points 
would have been coplanar. The computations for re- 
covering ap are simple and linear, and for convenience 
are summarized below: 

1: Recover the transformation A that satisfies pv' = 
AV and p j p j  = A p , ,  j = 1 , 2 , 3 .  Similarly, recover 
the transformation E that satisfies pu' = Ev and 
p,pj = Ep,,  j = 2 , 3 , 4 .  

2: Compute aP as the cross ratio of p',  A p ,  E p ,  U', for 
all points p .  

One can easily see how the projective invariant can 
be used to  re-project the scene onto a third view. Sim- 
ply perform Step 1 between the first and novel view 
(only four corresponding points and the corresponding 
epipoles are required). For any fifth point p ,  its cor- 
responding point p" in the third image can be found 
via cyp that has been recovered from the correspon- 
dence between p and p' (three points on the epipolar 
line and the cross ratio uniquely determine the fourth 
point p"). We will discuss re-projection and 3D recon- 
struction in more detail later, but before doing that it 
may be worthwhile to consider the situation of ortho- 
graphic projection. 

As mentioned previously, orthographic projection 
does not require special treatment because the refer- 
ence frame can map onto any configuration including 
the case where 0 is at infinity. Within the proposed 
geometric construction there are two points worth 
mentioning regarding the case of orthographic projec- 
tion. First, the invariant ap remains fixed under any 
projective transformation of the second image plane 
(the view on which up is computed). In particular the 
projection onto the second view can be orthographic 
(cross ratios are well defined for parallel rays as well). 
Second, consider the case when the first view is ortho- 
graphic, i.e., 0 is at infinity. In this case ap turns into 
an affine structure invariant: 

- *  F - P  
ap =< P, P ,  P , m  >= - 

P - P .  
As a result, the projective invariant is defined and re- 
covered under both orthographic and perspective pro- 
jections. Therefore, in addition to enabling the use 
of uncalibrated cameras, we have the property (ass* 
ciated with the projective framework and not to the 
particular algorithm we proposed) that the size of field 
is no longer an issue as in  a metric framework [l, 51. 

P 

(1.0.0.01 

Figure 4: Reconstructing homogeneous coordinates of 
P (see text). 

We next show how to reconstruct the homogeneous 
coordinate representation of the scene given that we 
have recovered ap .  Taken together, the central result 
is that we can recover projective structure without 
recovering the camera transforms using only four cor- 
responding points and the corresponding epipoles. 

4 Reconstructing Homogeneous 

Given the invariant structure ap we can easily re- 
construct the homogeneous coordinates (X, Y, 2,T) of 
any fifth object point P (its actually a sixth point 
overall, but its the fifth object point). We first assign 
the standard projective coordinates to  our frame of 
reference as follows: the coordinates (1, 1, 1 , l )  are as- 
signed to 0 (the COP of the first camera position), 
then the coordinates (O,O, 1,0) ,  (0, 1,0,0) ,  (O,O, 0 , l )  
and ( 1 , 0 , 0 , 0 )  are assigned to the four reference points 
P I ,  P2, P3 and P4, respectively (see Figure 4). 

In this choice of-coordinate system we have that 
p = (0, 6, Z,i) and P = (k ,y ,O ,o .  Note also that the 
projection of P4 onto the plane PI P2P3 is the Qoint 
with coordinates (0, 1, 1 , l ) .  In order to recover P we 
map the image plane onto the plane PlP2P3 by solving 
for the projective transformation B that is determined 
by the four following correspondences. Let e l ,  ..., e4 be 
the vectors (O,l,O),(l,O,O),(O,O, l ) , ( l ,  1 , l ) .  The cor- 
respondences p ,  - e , ,  j = 1, ..., 4,  fully determine 
the projective transformation B ,  i.e., B p j  = p j e j .  We 
can therefore set the coordinates of p: 

Coordinates 

B = (  ; p ) .  
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In a similar fashion we can recover P and with the 
knowledge of ap we can determine the coordinates of 
P .  We can- also do that in a simpler way without 
recovering P, as follows. We know that 

p P  = 0 + SI>,  

p P = O + s P ,  

and ap = 5 .  Because the third coordinate of P is 
always zero, we have s’ = - $. Thus, 

a -  
P = O - - g P .  

z 

Note that with this setup we have ap = 1 - z ,  which 
is the reason we referred to ap as “projective depth”. 
Also note that P is not determined uniquely when 
and P coincide (the ray OP intersects the line PzP3). 
In this case ap = 0 regardless of the position of P along 
the ray O P .  This singularity can be easily detected 
( A p  = p E p ,  for some scale factor p )  and avoided by us- 
ing the plane PlP2P4 instead of P2P3P4, for example. 
We have arrived at the following result: 

Theorem 1 In  the case where the location of epipoles 
are known, then four corresponding points,  coming 
f r o m  four non-coplunar points  in space, are sufficient 
for computing the 30 homogeneous projective coordi- 
nates for all other points in  space projecting onto cor- 
responding points in  both views. In the case the scene 
i s  undergoing an a f i n e  trunsformution in space, then 
the reconstructed scene is related t o  the t m e  one by 
some unknown uf ine  trunsformution. 

Note that the assignment of standard coordinates 
to the frame of reference is an arbitrary choice of rep- 
resentation and therefore, in the general case, the re- 
constructed structure is unique up to an unknown pro- 
jective transformation of the scene. When the scene 
undergoes only affine transformations in space, then 
the COP can have fixed coordinates in space while 
allowing the remaining basis points PI ,  ..., P4 to have 
any arbitrary representation in projective space. Be- 
cause the COP is part of the reference frame, it is al- 
ways assigned the same coordinates regardless of the 
viewing position from which we choose to reconstruct 
the scene. Therefore, the reconstructed scene, using 
the algorithm described above, will be unique up to 
an unknown affine transformation in space, and not 
a general projective transformation. For convenience 
one can projectively transform the reconstructed coor- 
dinates ( X ,  Y ,  2 , T )  to  ( X ,  Y ,  2,  X +Y + 2 +T) which 
ensures that the fourth coordinate is non-zero. 

In comparison with Faugeras’ [6] results, the bot- 
tom line is the same, i.e., with four corresponding 
points and the corresponding epipoles we can achieve 
3D reconstruction of projective or affine space. We 

approach the problem differently without first re- 
covering the camera transformation matrices and in- 
stead recover first a geometric invariant ap,  which can 
then be used to reconstruct the homogeneous coordi- 
nates. Faugeras goes first through full reconstruction 
of the camera transformations using five correspond- 
ing points and the corresponding epipoles. In the case 
of four corresponding points (and the corresponding 
epipoles), Faugeras shows that the camera transforma- 
tion can be recovered up to  four unknown parameters. 
Once these parameters are set (arbitrarily) then re- 
construction follows directly, and if one uses the same 
setting of the four parameters when reconstructing the 
scene from different view-points, then the reconstruc- 
tions are only an affine transformation away from each 
other. In our case, instead of fixing four parameters in 
the camera transformation from the scene to the first 
view, we fix the coordinates of the COP by having it 
being part of the reference frame. 

We next discuss the use of these results (the projec- 
tive invariant or the reconstructed scene) for obtaining 
re-projection onto a third view. 

5 Achieving Re-projection 
Considering the two views we worked with so far as 
“model” views of an object of interest, we can use 
the projective invariant cyp or the homogeneous coor- 
dinates to re-project the object onto any novel view 
given a small number of corresponding points across 
the three views. 

First, consider the use of ap to  achieve re- 
projection. Assume we have four corresponding points 
across the three views p ,  - p: - p’!, j = 1, ..., 4,  
and the epipoles U ,  V I  between the two model views and 
U ,  U” between the first model view and the novel view. 
From the correspondences p,  - p y ,  j = 1 , 2 , 3 ,  and 
U - U” we recover the collineation B ,  and similarly 
from the correspondences p ,  - p y ,  j = 2 , 3 , 4 ,  and 
U - U” we recover the collineation D. Then, for 
any corresponding points p - p‘ ,  the third corre- 
spondence p“ can be recovered from the cross ratio ap 
(computed from the two model views) and the three 
points Bp,  Dp,  U”. 

An alternative method is to first reconstruct the 
homogeneous coordinates of all points of interest from 
the two model views (by using four corresponding 
points and the corresponding epipoles). We then need 
only six corresponding points between the first model 
view and the novel view in order to recover the cam- 
era transformation matrix T from the scene onto the 
novel view: 

J 

p .  3 PJ I! = TP, j = 1, ..., 6. 
Note that we have 11  unknowns for T and 6 more un- 
knowns for p j  , but we have 18 linear equations. Then, 
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Figure 5: The geometry of locating the left epipole 
using two points out of the reference plane. 

for any point p for which we have recovered homoge- 
neous coordinates of the corresponding scene point P, 
we can recover the projection of P onto the novel view 
by, 

pp" = TP.  

This method, although less direct than the previ- 
ous one does not require the epipoles between the 
first model view and the novel view (which requires 
eight corresponding points), and therefore achieves re- 
projection with fewer corresponding points with the 
novel view. 

For completeness we review next two methods for 
recovering epipoles from point correspondences be- 
tween two views. Both methods are linear - one re- 
quires correspondences coming from six points, four 
of which are assumed to be coplanar, and the second 
method requires eight general correspondences. 

6 Recovering the Epipoles 

In general, the epipoles can be recovered from six 
points [ll] (four of which are assumed to be coplanar), 
seven points (non-linear algorithm, see [7]), or eight 
points [6]. The basic idea behind the six point method 
is that the ray connecting the COP of the first cam- 
era position 0 and any object point P projects onto 
an epipolar line in the second image, and therefore 
the epipole can be found by intersecting two epipolar 
lines (see Figure 5). Given six points PI, ..., Ps where 
P I ,  ..., P4 are coplanar and P,, Ps are out of that plane, 
first recover the projective transformation A that sat- 
isfies p j p j  = Apj  , j = 1, ... , 4 ,  then the epipoles U' and 

v are obtained as follows: 

= (pk x A p 5 )  (pk &6), 

U = (p5 X A-'pk) X (p6 X A- lpk) .  

Note that the epipoles are represented as rays with 
respect to the camera centers, and therefore the case 
of parallel epipolar lines leads to  a ray parallel to the 
image plane (third coordinate vanishes). 

The basic idea behind the eight point method [SI 
is that since epipolar lines in both images are pro- 
jectively related, then the epipolar geometry may be 
represented as a 2D correlation matrix. Let F be an 
epipolar transformation, i.e., Fl = pl', where 1 = U x p  
and 1' = V I  x p' are corresponding epipolar lines. We 
can rewrite the projective relation of epipolar lines us- 
ing the matrix form of cross-products: 

F ( u  x p )  = F[u]p  = pl', 

where [ U ]  is a skew symmetric matrix (and hence has 
rank 2). From the point/line incidence property we 
have that p' . I' = 0 and therefore, p"F[u]p = 0, or 
p '*Hp = 0 where H = F[v] .  The matrix H is a 2D 
correlation (i.e., maps points onto lines) and is also 
known as the "essential" matrix introduced by [12], 
and is of rank 2.  One can recover H (up to a scale 
factor) directly from eight corresponding points, or by 
using a principle components approach if more than 
eight points are available. Finally, it is easy to  see that 

U' = Hpi  x H p j ,  

where p , , p j  are any two points that are not on the 
same epipolar line (by taking more than two points 
we can find a least-squares fit to U'). Alternatively, as 
proposed in [6], we can recover U by noting that H v  = 
0 and therefore the epipole v can be uniquely recovered 
(up to a scale factor). Note that the determinant of the 
first principle minor of H vanishes in the case where 
v is an ideal point, i.e., hllh22 - hlzh21 = 0 .  In that 
case, the 2, y components of v can be recovered (up to 
a scale factor) from the third row of H .  

7 Computer Simulation 
We ran computer simulations to test the robustness 
of the re-projection method under various types of 
noise. Instead of measuring the error due to recon- 
struction we measured the errors due to re-projection 
onto a third view. The assumption being that the 
performance of the system (reconstruction and re- 
projection) largely depends on the quality of ap, so 
we may as well observe noise effects on re-projection. 
We tested the system using both schemes for recover- 
ing the epipoles. In general, the 8-point scheme is sig- 
nificantly more sensitive to  noise, and in practice ad- 
ditional corresponding points are required to achieve 
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reasonable recovery of the epipoles. The experiments 
we describe below use the 6-point scheme for recov- 
ering the epipoles. Because the 6-point scheme re- 
quires that four of the corresponding points be pro- 
jected from four coplanar points in space, it is of spe- 
cial interest to see how the method behaves under con- 
ditions that violate this assumption, and under noise 
conditions in general. 

The object we used for the experiment consists of 26 
points in space arranged in the following manner: 14 
points are on a plane (reference plane) ortho-parallel 
to the image plane, and 12 points are out of the ref- 
erence plane. The reference plane is located two fo- 
cal lengths away from the center of projection (focal 
length is set to 50 units). The depth of out-of-plane 
points varies randomly between 10 to 25 units away 
from the reference plane. The x,y coordinates of all 
points, except the points P I ,  ..., Ps, vary randomly be- 
tween 0 - 240. The points P I ,  ..., Ps have x,y coor- 
dinates that place these points all around the object 
(clustering these points together will inevitably con- 
tribute to  instability). 

We applied the following camera motion: The first 
view is simply a perspective projection of the object. 
The second view is a result of rotating the object 
around the point (128,128,100) with an axis of ro- 
tation described by the unit vector (0.14,0.7,0.7) by 
an angle of 29 degrees, followed by a perspective pro- 
jection (note that rotation about a point in space is 
equivalent to rotation about the center of projection 
followed by translation). The third (novel) view is con- 
structed in a similar manner with a rotation around 
the unit vector (0.7,0.7,0.14) by an angle of 17 de- 
grees. 

The 
first experiment tested the stability under the situ- 
ation where P I ,  ..., P4 are non-coplanar object points. 
The second experiment tested stability under random 
noise added to all image points in all views, and the 
third experiment tested stability under the situation 
that less noise is added to the six points, than to other 
points. 

7.1 Testing Deviation from 

In this experiment we investigated the effect of trans- 
lating PI along the optical axis (of the first camera po- 
sition) from its initial position on the reference plane 
( z  = 100) to the farthest depth position (t = 125), in 
increments of one unit at a time. The experiment was  
conducted using several objects of the type described 
above (the six points were fixed, the remaining points 
were assigned random positions in space in different 
trials), undergoing the same motion described above. 
The effect of depth translation to the level t = 125 on 

We conducted three types of experiments. 

Coplanarity 

the location of p1 is a shift of 0.93 pixels, on p i  is 1.58 
pixels, and on the location of p y  is 3.26 pixels. Depth 
translation is therefore equivalent to perturbing the 
location of the projections of PI by various degrees 
(depending on the 3D motion parameters). 

Figure 6 shows the average pixel error in re- 
projection over the entire range of depth translation. 
The average pixel error was measured as the average 
of deviations from the re-projected point to the actual 
location of the corresponding point in the novel view, 
taken over all points. Figure 6 also displays the result 
of re-projection for the case where PI is at z = 125. 
The average error is 1.31, and the maximal error (the 
point with the most deviation) is 7.1 pixels. The align- 
ment between the re-projected image and the novel 
image is, for the most part, fairly accurate. 

7.2 

We next add random noise to all image points in all 
three views (PI is set back to the reference plane). 
This experiment was done repeatedly over various de- 
grees of noise and over several objects. The results 
shown here have noise levels between 0-1 pixels ran- 
domly added to the x and y coordinates separately. 
The maximal perturbation is therefore f i , and be- 
cause the direction of perturbation is random, the 
maximal error in relative location is double, i.e., 2.8 
pixels. Figure 7 shows the average pixel errors over 
10 trials (one particular object, the same camera mo- 
tion as before). The average error fluctuates around 
1.6 pixels. Also shown is the result of re-projection on 
a typical trial with average error of 1.05 pixels, and 
maximal error of 5.41 pixels. The match between the 
re-projected image and the novel image is relatively 
good considering the amount of noise added. 

Situation of Random Noise to all 
Image Locations 

7.3 Random Noise Case 2 
A more realistic situation occurs when the magnitude 
of noise associated with the six points used for set- 
ting the construction (epipoles and projections of the 
tetrahedron of reference) is much lower than the noise 
associated with other points, for the reason that we 
are interested in tracking points of interest that are of- 
ten associated with distinct intensity structure (such 
as the tip of the eye in a picture of a face). Corre- 
lation methods, for instance, are known to perform 
much better on such locations, than on areas having 
smooth intensity change, or areas where the change in 
intensity is one-dimensional. We therefore applied a 
level of 0-0.3 perturbation to  the x and y coordinates 
of the six points, and a level of 0-1 to all other points 
(as before). The results are shown in Figure 8. The 
average pixel error over 10 trials fluctuates around 0.5 
pixels, and the re-projection shown for a typical trial 
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Figure 6: Deviation from coplanarity: average pixel error due to  translation of PI along the optical axis from 
z = 100 to z = 125, by increments of one unit. The result of re-projection (overlay of re-projected image and 
novel image) for the case z = 125. The average error is 1.31 and the maximal error is 7.1. 

Random Error Trials I 

Figure 7: Random noise added to all image points, over all views, for 10 trials. Average pixel error fluctuates 
around 1.6 pixels. The result of re-projection on a typical trial with average error of 1.05 pixels, and maximal 
error of 5.41 pixels. 

(average error 0.52, maximal error 1.61) is in relatively 
good correspondence with the novel view. With larger 
perturbations at a range of 0-2, the algorithm behaves 
proportionally well, i.e., the average error over 10 tri- 
als is 1.37. 

8 Summary 

We have described new techniques for two related 
problems: the problem of recovering structure from 
point matches, and the problem of visual recognition 
via alignment (the problem of re-projection). Our ap- 
proach was based on recovering a geometric projective 
invariant that can then be used for both purposes: re- 
construction and re-projection. 

The key distinct features of our approach is, first, 
the definition of a new structural description (pro- 
jective depth) which drives the applications of recon- 
struction and re-projection. Second, is the role played 
by the center of projection and the epipoles. Thirdly, 
shape reconstruction and re-projection are achieved 
without going through the computations of the cam- 

era transformation matrices (e.g., structure without 
motion). The overall features of the approach (shared 
with [6, 13, 91) is that the system treats orthographic 
and perspective projections alike, and internal cam- 
era parameters are folded into the projection matrices, 
thereby allowing for views to  be taken by uncalibrated 
cameras. 

The projective depth invariant was recovered from 
four point matches arising from the projections of four 
non-coplanar object points, and the epipoles. The 
epipoles played a double role: first, the correspond- 
ing epipoles served as the projection of a fifth point in 
space, thereby allowing us to have a projective frame 
of reference while observing only four point matches 
from the scene. Second, with the epipoles we could de- 
termine the projections of various faces of the tetr* 
hedron of reference - a task that otherwise would 
have required observing point matches coming from 
four coplanar points on each face. We then described 
two applications for which the invariant can be used 
for. First, we have shown that with the invariant we 
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Figure 8: Random noise added to non-privileged image points, over all views, for 10 trials. Average pixel error 
fluctuates around 0.5 pixels. The result of re-projection on a typical trial with average error of 0.52 pixels, and 
maximal error of 1.61 pixels. 

can achieve projective or affine reconstruction of the 
scene. Second, the invariant was shown to be equal to 
1 - z ,  where z is the third homogeneous coordinate of 
space. Thirdly, re-projection onto a third view was 
shown possible using the invariant directly without 
going through an explicit reconstruction of projective 
structure. 

The algorithms for reconstruction requires eight 
corresponding points, or six assuming four of them 
are coming from coplanar points in the scene. For 
re-projection, the result is that the more we recover 
about the scene and the camera transformation the 
less point matches are needed. We have seen that if 
projective structure is recovered, then only six point 
matches with the novel view are required for linear 
re-projection (via recovery of the camera transform 
matrix). If the projective invariant is used instead, 
then eight point matches are required. 

We have shown that the invariant is complete in 
terms of shape description, that is, one can reconstruct 
the projective coordinates of space without further in- 
formation from the images. Representing structure in 
terms of single invariant number (like depth mea- 
surements in metric reconstructions) carries certain 
advantages over representations in terms of invariant 
coordinates (a tetrad of coordinates per point). For 
example, in a number of algorithms that manipulate 
depth measurements, such as the use of Kalman filters 
for reconstruction over sequences of views, one can 
simply replace “depth” by “projective depth” with- 
out changing much the basic structure of the a lge  
rithm. A compact shape descriptor is also likely to 
be less sensitive in unstable situations, like in the case 
of reconstruction or re-projection when the base-line 
is relatively small. For example, the numerator and 
denominator of the invariant become proportionally 
small for small motions of the camera, implying a rel- 
atively stable situation. These cases and other uses of 

the invariant are planned for future research. 
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