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Abstract 

Landmark-based navigation usually relies o n  the 
identification and subsequent recognition of a number 
of environment objects, that are deemed adequate in 
describing the  workspace structure. This  process is  
inherently dific.uk in practice, due t o  the m a n y  dif- 
ferent poses of a n  object that m a y  be encountered in 
navigational trials. T o  aleviate for that,  we propose 
a n  approach that employs projective invariants com- 
puted o n  quintuples of points as workspace landmarks. 
Such  quantities remain  invariant under  different cam- 
era positions and provide for effective description of 
the workspace structure. In order t o  identify poten- 
tial corresponding quintuples in image frames,  we in- 
troduce a simple test  based o n  the covariance matr ix  
estimate of each quintuple. With this test ,  we effec- 
tively by-pass the calculation of point correspondences. 
Since the above tes t  indicates correspondence between 
quintuples, and n o t  between their individual points, we 
subsequently employ a permutation projective invari- 
an t  for quintuple recognition. Our approach has been 
extensively evaluated using synthetic as well as real en- 
vironments. The  results obtained verify i t s  robustness 
along with i t s  applicability in robotic navigation. 

1 Introduction 

In this paper we present work concerning the abil- 
ity of robotic platforms to visually recognize land- 
marks. Landmark recognition is expected to enhance 
the capabilities of modern robotic platforms and pave 
the way towards really autonomous robots. Current 
techniques, entailing accurate measurements and /or 
knowledge of the environment, confine autonomous 
navigation to known or engineered environments. 

The use of visual landmarks for topological navi- 
gation has appeared previously in the literature, but 
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most attempts seem to focus on simple landmark pat- 
terns, since there is a certain amount of difficulty that 
appears when realistic landmarks are to be tackled [l]. 
Representative approaches include predesigned land- 
marks  [2] and selected landmarks,  where the workspace 
is known in advance [3]; another approach utilizes 
straight lines [4, 51. In recent work in our labora- 
tory [6], we have presented a geometric method for 
visual recognition of landmarks. However, the solu- 
tion demonstrated relied heavily on the assumption 
that the workspace consists of parallelepipeds, confin- 
ing the autonomicity of a robot's navigational task. In 
this paper we address the same problem and propose 
a solution for more general workspaces, making use of 
projective invariants. 

Invariants of a variety of features that appear in an 
image have come of frequent use in computer vision, 
particularly for tasks of pattern matching and object 
identification [7]. Their use seems ideal if one wants to 
ameliorate the computational complexity imposed on 
a matching search by the construction of a total visual 
database to reflect the environment a robotic platform 
has to face. This complexity is mainly induced by the 
fact that readily observed geometric properties are not 
invariant under projective transformation. Because of 
that, either a multiplicity of pose-based transforma- 
tions of each model will be stored in the database, 
or pose-dependent variants of each model have to be 
constructed at run-time, since all these variants need 
to be tested before any hypothesis can be discarded. 
With either solution, the matching search is computa- 
tionally taxed. 

2 Method Overview 

To tackle these problems our approach adopts pro- 
jective invariants, particularly 2-D cross-ratios, that 
are used to recognize and store landmarks during a 
learning phase. These landmarks are then matched to 
rediscovered landmarks at navigation time with min- 
imum computational cost. Although invariants pro- 
vide a fast indexing method into databases of models, 
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the use of projective invariants as a verifier between 
features of different frames is often avoided since it 
usually presupposes solving the correspondence prob- 
lem. Perhaps the greatest difficulty lies at the fact 
that most projective invariants are permutation sen- 
sitive, i.e. a different ordering of the features usually 
produces a different value of the projective invariant. 
In such a case, a value for the invariant has to be 
stored for any of the possible orders of the features 
under investigation, i.e for features based on n points, 
one needs to store n! values. Even in that case, the 
resolution of the invariant value space would be too 
fine for a unique matching decision to be made. In 
our work, we treat quintuples of co-planar points and 
we by-pass the point-to-point correspondence prob- 
lem, which is not trivial, by exploiting a permutation 
insensitive projective invariant. This allows us to store 
one value for every quintuple, instead of 120, keeping 
both the search space and matching time to a mini- 
mum. The sole assumption of our method is that our 
environment contains planar surfaces. All conclusions 
at navigation time are drawn without any knowledge 
of the environment, pose estimation or calibration of 
the visual system. 

Feasibility and robustness of the proposed method 
have been proven through experiments both on soft- 
ware simulated realistic indoor environments and on 
actual indoor environments using TALOS, a robotic 
platform with an active vision head available to the 
Computer Vision and Robotics Lab at FORTH. 

In the rest of the paper, section 3 offers a formal 
definition of what constitutes a landmark in our con- 
text and details on landmark extraction and section 
4 focuses on landmark recognition. Section 5 details 
our experimental set-up and presents respective re- 
sults, while section 6 concludes the paper with a brief 
discussion and outline of future directions. 

3 Learning 

In this section we describe the learning phase dur- 
ing which landmark patterns are extracted and stored 
in a model base for future reference. We review the 
2D cross-ratio and state the permutation insensitive 
version we shall use for our calculations in the follow- 
ing sections. We also give the details of our extraction 
method, since it is, in essence, the same method that 
we use later, during the recognition phase, to obtain 
the visual landmarks observed before matching them 
to the model base. 

3.1 Two-dimensional cross-ratios 

Computer vision researchers have shown aptitude 
in using projective invariants for recognition in model 
based vision, shape descriptors for 3D objects and 

for producing the projection of a structure from one 
view to another (transference) [8, 91. Projective in- 
variants have also been used for the characterization 
of unknown geometric structure [7]. In this latter use, 
the non-planarity of five points depicted on an im- 
age can be established by calculating a particular in- 
variant, the cross-ratio, from two different views with- 
out a priori scene knowledge or camera calibration. If 
the values of the invariant calculated on these points 
from two different views differ significantly then these 
points are not co-planar. Conversely, if the values co- 
incide we have strong evidence, albeit not proof, that 
the points are co-planar. 

There exist several equivalent definitions of 2-D 
cross-ratios. In our calculations, we utilized the fol- 
lowing definition: 

P = [Pi, Pz, P3, P 4 ,  P51 

- - det(Pl,PZ,P4) det(Pl,P3,&) 
~ W I ,  P3, P4) det(P1, Pz, P5) 

- - 

where Pi are five points, not three of which are 
colinear, described in homogeneous co-ordinates by 
(zi, yi, zi). We consider all points to be Cartesian and 
not ideal, therefore in all our calculations we take zi 
equal to 1. Noticing that PI is the only point involved 
in all the determinants we can easily deduce that there 
are five different cross-ratios defined in the above man- 
ner. Straightforward calculations can show that any 
two of the five different cross-ratios are enough to ex- 
press the other three. In accordance with [lo] we cal- 
culate one more cross-ratio, 

v = [Pz, Pi, P3, P4, p5] (2) 

Based on these two different cross ratios, one can ob- 
tain [lo] a permutation insensitive projective invariant 
W P ,  4, given by 

where J(X) is a one dimensional permutation insensi- 
tive invariant computed as, 

(4) 
2X6 - 6X5 +9X4  - 8X3 +9X2 - 6X+ 2 

X6 - 3X5 + 3X4 - X3 +3X2  - 3X+ 1 
J[X] = 
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For the purposes of this paper we define visual land- 
marks  to be sets, V L i  containing sub-landmarks l % , j ,  
The sub-landmarks are quintuples of co-planar points 
P i , j , k ,  k=1..5 obeying simple assumptions such as 
saliency and spatial dispersion. The points that form 
these quintuples are derived directly from the image 
using first a robust corner detector [ll]. The points de- 
rived from the corner-detector indicate potential land- 
mark locations and form a corner map.  In accordance 
with recent theories of active and purposive vision we 
further restrict our set of points by means of a “focus- 
of-attention” mechanism. Taking advantage of the 
fact that objects which can be characterised as land- 
marks should form distinctive enough patterns to be 
easily extracted from the rest of the environment, we 
proceed in the construction of a saliency m a p  [6, 121. 
This map brings out the most distinctive features of 
an image by assigning to their areas higher values as 
opposed to smooth regions that receive lower ratings. 
We compute the saliency map using a number of fea- 
tures that detect in a quantitative manner areas in 
our images which contain distinctive objects. These 
features, assuming a window W of our image, include 
area correlation, image entropy, standard deviation of 
the intensity histogram over W ,  as well as standard 
deviation of pointwise differences in W over succes- 
sive images. 

Out of the points indicated from the intersection of 
the corner map and the saliency map we pick quintu- 
ples l i j  of points P i , j , k  that are close enough to each 
other with respect to an image window W,, but sat- 
isfy a threshold for spatial dispersion. We also take 
consideration so that no three of the points in a quin- 
tuple are co-linear, otherwise we cannot apply the 2-D 
cross-ratio. On these quintuples we calculate the per- 
mutation insensitive projective invariant of (4). Prior 
to commiting l i j  to a legal sub-landmark, we need to 
establish the co-planarity of the five points P i , j , k  that 
constitute 1,. This is based on results from [8] using 
the fact that the cross-ratio of the points remains in- 
variant over different frames, provided the points used 
are co-planar. 

Since the robotic platform is not assumed to move 
fast with respect to the frame grabbing, we may safely 
assume that consecutive frames F ,  F’ do not differ 
substantially in their structure. This allows for detec- 
tion of new quintuples 1; in F’, which are potential 
corresponding candidates for each quintuple 10 in F ,  
by repeating the steps detailed above. 

As already mentioned the invariant  criterion, i.e. 
the fact that calculation of the invariant should yield 
the same value over corresponding quintuples in differ- 
ent frames, is rather a strong evidence but not a proof 
of planarity and coincidence of l ; j  and 1 i j ,  therefore we 
need to confine the search in F’ to a few (ideally, one) 

3.2 Visual Landmarks 
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quintuples for which there is indication of correspo- 
nence. To achieve this, we introduce the covariance 
ma t r i x  tes t  which is used as a measure of similarity 
between l i j  and candidate quintuples l i j  by quantify- 
ing and comparing the spatial dispersion of each one’s 
points. By employing this test, we explicitly by-pass 
the point-to-point correspondence problem between 
the points in l i j  and candidate quintuples l i j  solv- 
ing the far easier spatial distribution correspondence 
problem between quintuples of points. In essence, the 
covariance matrix test, serves as a quantitative crite- 
rion of similarity between the spatial distributions of 
the points of two quintuples. Its introduction is justi- 
fied, since we expect this distribution to change only 
slightly when the same scene is imaged from different 
viewpoints. 

In order to detect candidate quintuples we estab- 
lish an area which in the first frame F contains the 
quintuple l i j .  This area is the one we focus on in the 
consecutive frame F‘ , expanded appropriately to cater 
for the motion of the robot. To verify that the match- 
ing of quintuples in consecutive frames is correct and 
single out one -or few- corresponding quintuple in F’ 
for each quintuple in F we construct all possible pairs 
between every quintuple l i j  identified in F and its can- 
didate corresponding quintuples 1i j  in F’. For each 
such pair (lij,!ij)we examine the distances of their co- 
variance matrices . We built the covariance matrix for 
each quintuple according to the unbiased estimator: 

( 5 )  
k=l  

where the vector X k  = ( Z k , y k ) ,  k = 1..5 is assumed to 
be the estimated distribution followed by the points 
P i , j , k  in any quintuple and p the vector of the mean.  
We then calculate the norm 

2 2  

q = l  T = l  

where Q ~ , ~  and a:,. are the respective elements of the 
two covariance matrices, calculated for each pair of 
quintuples ( l i j ,  l i , j )  under consideration. The lower 
the value of this norm, the higher the fidelity on the 
matching is. As a last step we verify that our originally 
selected quintuple and the one that the covariance ma- 
trix test yields as corresponding give the same invari- 
ant value. This is a strong indication that the five 
points under consideration are co-planar and hence 
the points P i , j , k  originally selected qualify for a sub- 
landmark, l i , j .  

3.3 Topological map construction 

During a training period the robotic platform iden- 
tifies and stores landmarks and their respective sub- 
landmarks in the above manner. Attached to each 



sub-landmark we also save the value of the covariance 
matrix norm and the value of the projective invariant. 
Moreover, we save references to navigational actions 
selectable at each landmark, building in effect a topo- 
logical map, which can be used at runtime for decisions 
concerning the appropriate navigational task. 

4 Landmark Recognition 

Once our platform is considered trained we can have 
our robot move around and recognize landmarks. In 
doing this, we follow a procedure similar to  the one 
described earlier for extracting landmarks in the first 
place. That is, we first apply the corner detector and 
then the procedures that build the saliency map. Hav- 
ing built the saliency map, we consider the intersection 
of the saliency map and the corner map and we begin 
testing hypotheses by looking in the model base at ar- 
eas close to  the areas dictated by our landmarks. The 
intersected saliency and corner map for the image we 
get at navigation time may introduce more than one 
candidate quintuples in the respective area, therefore 
the test of the covariance matrix is used again to  nar- 
row down the possibilities of a match. Finally, ap- 
plying the projective invariant and comparing it with 
the stored value of the original landmark in the model- 
base indicates first of all that the new quintuple under 
consideration contains co-planar points and resolves 
any ties between quintuples that might have risen from 
the covariance matrix test. This whole procedure re- 
sults at one quintuple being identified to be the same 
as the stored one, therefore a sub-landmark has been 
recognized and according actions for the current nav- 
igation task may take effect. Extensive experiments 
documented in the following section have proven the 
feasibility of this approach. Note again at this point 
that using a permutation insensitive invariant frees us 
from solving the problem of one-to-one correspondence 
between the points that form the quintuples. 

5 Experimental Results 

To quantitatively evaluate our method we followed 
a dual approach. First, we set up a number of experi- 
ments with simulated environments where the camera 
could be placed at different view points and register 
what was seen. We used these simulated world tests, 
where the ground truth is known, to  evaluate the co- 
variance matrix test, i.e. to  verify that the lowest 
values of the norm described in Eq. (6) appear when 
a quintuple is tested against its trully respective quin- 
tuple in different frames. We also verified that the 
value of the norm is sensitive to noise, which is essen- 
tial in our case, as it increases drastically when one or 
more false correspondence points are introduced . The 

simulated environment tests which we describe below 
allowed us to  define a threshold of acceptable test val- 
ues that behaved satisfactorily during landmark ex- 
traction and recognition in real environments. 

To set up our experiments we used POVRAY 3.0 
on a Solaris 2.6 platform, to  create a sequence of 50 
frames. The frames depicted a world constructed by 5 
surfaces, i.e. three walls, ceiling and floor. We tested 
our algorithms on the frames derived in this way and 
we saw that the results were valid except for the sta- 
tistical error. On every frame we randomly selected 8 
quintuples, 2 per surface, excluding the far-end wall. 
For every possible pair of frames we apply the co- 
variance matrix test on all 8 corresponding quintu- 
ples, which resulted to 9,800 experiments for correct 
matching of sub-landmarks. In Fig. 1 we present his- 
tograms depicting the values of the covariance matrix 
test against the number of tests that returned each 
value. As can be observed, in Fig. la  where we run 
the test on the actual corresponding points for each 
quintuple, the covariance matrix test reported values 
well confined in a certain interval, clearly marked by 
a threshold. In Fig. lb ,  where only four points of 
each quintuple are in true correspondence, the values 
spread out in a much larger interval, and only a small 
percentage of them satisfies the threshold appearing in 
Fig. la. In Fig. IC to Fig. l e  we relax the true corre- 
spondence one point at a time with obvious value shift 
on behalf of the covariance matrix test, until no corre- 
sponding points exist in the quintuples under consid- 
eration (Fig. lf) .  This way it has been verified that the 
covariance matrix test is a valid quantitative criterion 
to express the proximity in space of points belonging 
to  quintuples registered from different viewpoints. 

Next, we implemented the above mentioned algo- 
rithms and verified them using TALOS, the mobile 
robotic platform available at the Computer Vision and 
Robotics Lab, at FORTH. A number of experiments 
have been conducted that demonstrated the robust- 
ness and applicability of the method. In Fig. 2 we 
present a sample result illustrating the steps both dur- 
ing the learning phase (left column) and the recog- 
nition phase (right column). Fig. 2a shows a frame 
encountered in the learning phase with the points de- 
tected as candidates for quintuples superimposed on 
the raw data. The actual sub-landmarks extracted 
in the manner described in section 2 are outlined by 
their Minimum Bounding Rectangle (Fig. 2c). The 
covariance matrix test for these sub-landmarks (com- 
puted as described in Section 3.2) has resulted in the 
values 747 (left sub-landmark) and 504 (right sub- 
landmark) respectively, which are in accordance with 
the imposed threshold. The permutation insensitive 
invariant value for establishing the co-planarity of the 
points constituting the two sub-landmarks has shown 
a difference of 3% and 4% respectively. The same 
scene viewed from a different vantage point has been 
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Figure 1: Results of the covariance matrix test (see text for explanation). 

observed during a navigation trial and is illustrated in 
Fig. 2b. As can be verified from Fig. 2d the same sub- 
landmarks have been succesfully recognized and they 
are outlined by the expanded window which the algo- 
rithm used to  detect them. The covariance matrix test 
has produced the values of 783 and 562, respectively; 
similarly, the invariant values used for the recogni- 
tion of these sub-landmarks have shown a difference 
of 3.3% and 4.5%, respectively. Therefore, it is evi- 
dent that this example verifies the applicability of our 
method for robust extraction and recognition of land- 
marks with the sole assumption that the workspace 
contains planar surfaces. 

6 Summary and Conclusions 

In this paper, we have presented an approach 
for automated landmark extraction during an initial 
learning period and a subsequent recognition capa- 
bility during navigation tasks. This approach sup- 
ports topological navigation, utilising permutation in- 
sensitive projective invariants and relies only on the 
existence of planar regions in the workspace. Ex- 
perimental results have shown that the method fa- 
cilitates accurate recognition, avoiding confinements 
posed by geometric methods or exceptionally taxing 

computations involved in solving point-to-point corre- 
spondence problems. We intend to  enhance the real 
time implementation of our method by improving on 
the search at recognition time, possibly by utilising 
the values of the invariant as an indexing mechanism 
for the model base. Additionally, we intend to  study 
uncertainty treatment in our implementation, derived 
by partial or total occlusion of sub-landmarks. To 
tackle this we intend to introduce confidence measures 
and sub-landmark expectation during the recognition 
phase, based on the topological map. 
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