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Abstract 
In this paper two new feature tracking algorithms are 
proposed. In the first algorithm, a perspective camera 
model is used. Making use of the projective inuari- 
ant of Barrett, and assuming the image feature points 
corresponding to  8 general points in space are tracked 
b y  a conventional method in the image sequence, the 
other feature points in the sequence can be tracked us- 
ing a Hough technique. Correspondence between two 
reference images as required by the original Barrett’s 
invariant is  not necessary. In the second algorithm, 
an  a f ine  camera model is assumed and the image fea- 
ture points corresponding to 4 non-coplanar points in 
space are assumed tracked in the image sequence us- 
ing a conventional method. These image points f o rm 
the basis of a f ine  coordinates in each image. After 
the correspondence of a fifth point is established be- 
tween the first two images, the a f ine  coordinates of 
all image points in the first images existence can be 
computed. As far as we know, this is  the only algo- 
rithm which can transfer a point knowing only a single 
image. Experiments showed that both algorithms gave 
highly accurate tracking results. 

Keywords : Feature tracking] affine invariant] per- 
spective invariant, Hough transform 

1 Introduction 

Recently, a number of papers have discussed the prob- 
lem of computing the information of an image using 
the information from two or more other images of the 
same scene [l, 2,3]. This problem is strongly related to 
the tracking problem. Many of the methods proposed 
assume the knowledge of the epipolar geometry or the 
cameras are weakly calibrated [l, 81. However, with- 
out camera calibration, some important results [7,6,3] 
have been obtained by a number of researchers using 
geometric invariance to map image features from two 

reference images to a third image. Shashua [3] shows 
the of a trilinear function between three perspective 
views and that the coefficients of the function can 
be recovered linearly without establishing the epipolar 
geometry first. Hartley [ll] proposed a trifocal tensors 
method for transferring lines and points corresponding 
within two images into a third image. The parame- 
ters of the trifocal tensors can be computed if seven 
point correspondences are established. Barrett [7] has 
proposed a perspective invariant based on the corre- 
spondence of eight points in general positions in three 
views. If the correspondence of a new feature point, 
not included in the previous eight points, can be es- 
tablished between the two reference images, this point 
can be mapped to the third image using the above 
invariant. This method was termed by Mundy and 
Zisserman as point transfer [7]. Reid and Murray [lo] 
applied the concept to the design of a real-time gaze 
control system. 

In this paper, we propose two tracking algorithms 
with uncalibrated camera: the first one uses a per- 
spective invariant of Barrett [7] and the second takes 
advantage of affine invariants. Following the same line 
of thinking as the algorithm reported in [4], assuming 
eight image feature points are assumed tracked cor- 
rectly by a conventional technique. The proposed al- 
gorithm will then establish the correspondence of any 
image feature through out an image sequence by a 
Hough technique using the Barrett’s invariant. In the 
second algorithm, an affine camera model is assumed. 
Unlike the method of Shashua and the trifocal tensor 
method, we can transfer a point from a first image to a 
third image without having to find its correspondence 
in a second image in advance. As far as we know, ours 
is the only method which can do this. In our algo- 
rithm, a set of four images features corresponding to 
four non-coplanar points in space is assumed tracked 
correctly throughout the image sequence. The corre- 
spondence of a fifth image feature between the first 
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two images is also assumed established. The affine 
coordinates of every image point in the first image 
can then be computed using the five image features. 
Thus all image points in the first image, including non- 
detectable image points, can be transferred to any tar- 
get image in the sequence. This is true even if the 
location of the image point at the target image hap- 
pened to be occluded provided the 4 basis points are 
detectable in the target image. In [ lo]  Reid and Mur- 
ray independently proposed a point transfer scheme. 
Unlike our algorithm, correspondence between a first 
and a second image must be established before the 
corresponding point in a third image can be computed 
by transfer. We provide a formal proof that 5 corre- 
sponding image points in two images is sufficient for 
computing the invariant affine coordinates of any im- 
age point. 

2 Feature Tracking Using Per- 
spective Invariant 

This section depicts our work on the tracking of sparse 
feature points under the circumstance of perspective 
camera. 

2.1 Point Transfer 
Barrett’s perspective invariant [7] is described as be- 
low. Here, the case of perspective viewing at two po- 
sitions is considered and the world coordinate frame is 
supposed to coincide with that of the left camera. Fig- 
ure 1 gives the illustration for the geometry. Let P be 
an arbitrary point in P 3 ,  i.e., 3D projective space, PI  
and P ,  its images in the left and right image planes, 
respectively. In Euclidean space coordinate frame, P1 
and P ,  possess the following relationship: 

P ,  = RPi + T  (1) 

where R and T are the rigid rotational matrix and 
translational vector, respectively. 

As shown in Figure 1 ,  the following equation obvi- 
ously holds: 

P , .  (T x P, )  = 0 (2) 

P:MPt = 0 (3) 

Equation (2) can be rewritten as, 

where A4 = TR is called the essential matrix for the 
two view geometry, r is theequivalent skew symmetric 
matrix of 2‘. Equation (3) reveals the epipolar geo- 
metric relation between the left and the right image 
planes in Euclidean space. 

V 
P 

Figure 1: The geometry of two perspective views. 

By substituting Equation ( 3 )  with the projective 
relationship between the image and world coordinate 
frames, p = ( f / Z ) P ,  where f is the focal length of 
the camera, we have 

PFMPl = 0 (4) 

where p ,  = ( ~ ~ , y ~ , l ) ~  and p l  = ( z ~ , y ~ , l ) ~  are the 
right and left homogeneous image coordinates, respec- 
tively. 

Assume that 8 point correspondences over 3 im- 
ages 7r1 , 7r2 , 7r3 are established. From a general form of 
Equation (4), 

PFMP, = ( i ; ) t  ( 3:; ::: 2) ( ;;) 
m3z m33 

= 0  

an expanded form of above equation can be obtained: 

b m = O  (5) 

where b = ( ~ 1 2 r , ~ 1 ~ r , 2 l r ~ ~ 2 r , ~ l y r 7 y l , ~ ~ 7 ~ r ,  l ) , m  = 

Let b l ,  bz, . . . , b8 denote the 8 point correspon- 
dences between 7r1 and 7 r 3 ,  bg = b ( p , , x )  the corre- 
spondence between an arbitrary point p ,  in 7r1 and x ,  
its counterpart in 7r3, and B = ( b l ,  b 2 , . . . ,  bg)t ,  then 
the following equation holds: 

t (mil 7 m12 , m13 , m21, m22 7 m Z 3  7 m31 > m3Z 7 m33) . 

Bm=O (6) 

In order for Equation (6) to have a non-trivial solu- 
tion for m, the determinant of B must be identically 
zero, i.e., IBI = 0.  Since this condition holds for any 
positions of the camera and any selections of the set of 
the points, it is an invariant for the two-views imaging 
process. A linear equation defined in the third image 
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plane is obtained by expanding the invariant condition 
IBI = 0, 

ax, + by, + c = 0 (7) 

where (IC,, y,, is the homogeneous coordinates of x 
in 7r3, a ,  b, and c are determined by bl ,  b2, .  . . , b8 and 
p , .  From the correspondences between 7r2 and 7r3 ,  a 
similar equation can be derived, 

a’z, + b‘y, + c’ = 0 (8) 

The intersection of the two lines is the position of x. 

2.2 Sparse Point Identification 

Given iLn image sequence {fi I i = 1 , 2 , .  . . , M } ,  the 
correspondences of 8 control points are assumed to be 
established over the image sequence. Let {p i ,  I j = 
1 , 2 , .  . . , Ni}  denote a set of points other than the 8 
control points visible in the i th image frame. For a 
frame fi (i 2 2), each point p i ,  is mapped into a 
line in the the first image. For a certain point p j ,  re- 
peating the mapping operation throughout the image 
sequence except for the first image would result in up 
to M lines intersected where p l j  locates in the first 
image. Figure 2 depicts the mechanism of multiple 
mapping, which is essentially coincident with Hough 
transformation. 

0 
0 

0 

Figure 2: Hough transformation performed over the 
image sequence. 

To accomplish the trajectory of the point over the 
image sequence, all points of { p i j }  for each frame 
f i  (i 2 2), are mapped onto the the first frame to draw 
out their corresponding lines on it, with each line be- 
ing assigned with a unique label for its identification. 
A 2D accumulating array associated with the first im- 
age is created to count the times the lines intersect in 

an accumulator cell of finite size. By locating the lo- 
cal maxima of the counts over the accumulator array, 
the positions of the feature points in the first image 
are estimated. Trajectory over the image sequence for 
every feature point is therefore found out by tracing 
back through the labeling clues recorded during the 
processes of point-to-line mapping. 

3 Feature Tracking Using Affine 
Invariants 

In this section, we discuss a novel approach to fea- 
ture point tracking which is based on affine coordinate 
transfer. 

3.1 Linear Representation for Affine 

Given four non-coplanar points in P 3 ,  Pi ( i  = 
0,1,2,3),  the vectors ~i defined below are obviously 
linearly independent: 

Points 

s i  = Pi - Po, i = 1 ,2 ,3  (9) 

Thus (i = 1,2,3) compose a basis in P 3 .  There- 
fore, any other point Pi E P 3 ,  i = 4 , 5 , . . . ,  can be 
represented in terms of ~i ( i  = 1,2,3)  by the following 
linear formula: 

Pi = PO + aiel + Pi.2 + yi.3 (10) 

where a i , p i ,  and yi are termed as the affine coordi- 
nates of point Pi.  

The 3D affine transformation is given by 

P ;  = A P ~  + T  (11) 

where A is a 3 x 3 transformation matrix and T a 
3-vector of translation. 

Substituting Equation (10) into Equation (11) re- 
sults in a transformed version of Equation (10): 

Pi = Pb + a i . :  + pis; + yi€$ (12) 

From Equation (10) and (12) we know that the 
affine coordinates a i , p i ,  and y i  are geometrically in- 
variant. 

3.2 Affine Coordinates Computation 
By substituting the Equation (10) into the following 
3D to 2D projection equation for an affine camera 
model: 

p = M P + t  (13) 
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where M is a general 2 x 3 matrix and t a general 2- 
tuple vector, we have the counterpart of Equation (10) 
on the image plane: 

pi  - P ,  = aiel + Pie2 + yie3 (14) 

where ej =  ME^, j = 1,2,3.  Similar equation holds 
for any other view: 

So if the affine coordinates ai,,l3i, and yi for an in- 
dividual point are known, its trajectory over the entire 
image sequence is determined, provided the affine ba- 
sis is also known. The problem we are facing now is 
how to  compute the three invariant parameters from 
multiple views. 

Assertion 1. Five non-coplanar points visible in two 
views with the points ' correspondences between the 
two views being known are suficient to determine the 
a f ine  coordinates of any other point visible at least in 
one of the two images. 

Proof. Given a point P E P 3 .  P is projected onto 
the first image plane with a manner depicted by Equa- 
tion (13). Moving the camera to a new position, the 
image of P on the second image plane is given by 

p' = M'P + t' (16) 

By eliminating P in Equation (13) and (16) an im- 
plicit form of the relationship between p and p' is ob- 
tained: 

az' + by' + cz + d y  + e = 0 (17) 

where a l b , c , d ,  and e are unknowns, which depend 
only on the camera geometry and motion parameters 
in the 3D space. Equation (17) is known as @ne 
epipolar constraint equation [8]. 

By setting e = 1 without loss of generality, a non- 
trivial solution of Equation (17) is obtained from four 
point correspondences between the two views: 

+ by: + CZ, + dy, = -1, i = 1,2 ,3 ,4  (18) 

Since a l b , c , d  are related only to the poses of the 
affine camera at  the two viewing positions in the world 
frame, they are the same for any pair of correspond- 
ing points in the two image planes. Note that the 
condition that the four control points are not copla- 
nar is necessary. Without it, the determinant of the 
coefficient matrix will be zero because of the linear 
dependence of the column vectors of the coefficient 
matrix. 

To calculate the affine coordinates ai,,&, and yi 
in Equation (14), the equation in combination with 
Equation (15) and (17) are used to form following si- 
multaneous equations: 

az: + by: + cxi + dyi = -1 
xi = zo + a i e l ,  + Pie2, + yie3, 
yi = YO + a i e l y  + Pieay + ~ 3 ,  
xi = zb + cllie:, + ,&elz + Tie;, 
yi = yb + ai"& + Pie;, + Tie;, 

} (19) 

In Equation (19), ail,Bilyi,z:, and yi are unknowns. 
From Equation (19) we can solve for the unknowns. 

The control points respectively used in the com- 
putations of both the affine epipolar geometric pa- 
rameters and the affine invariant coordinates should 
be different each other a t  least for one point. Oth- 
erwise] there will be no solution to  Equation (19) be- 
cause of the linear dependence of the component equa- 
tions. Therefore, a minimum of five non-coplanar con- 
trol points are necessary and suficient to compute out 
the invariant affine coordinates. 0 

3.3 Point Transfer 
Given an image sequence, {fi I i = 1 ,2 ,  . ' . , M } .  Let 
p l j  be an arbitrary point other than the five control 
points in the first image of the image sequence. If 
the affine coordinates of plj, i.e., a j ,  &,yj, has been 
computed out with the method we proposed in Sec- 
tion 3.2, then the counterpart of p l j  in any other im- 
age f i ,  (i = 2,3, .  . . , M )  is obtained by 

where i denotes the image number in the sequence] j 
the point number, ( e ~ ) l e ~ ) , e ~ ) )  is the affine basis in 
i th image and p!) is the origin of the basis. Please 
note that the implicit assumption that the set of 4 
points forming the affine basis are correctly tracked 
throughout the image sequence beforehand. Obvi- 
ously, Equation (20) accomplishes a method for point 
feature tracking. Since the image numbering is arbi- 
trary, the method permits the selection of the original 
point in any image. Therefore] points invisible in some 
images can still be tracked over the entire sequence. 

4 Experiments 
In this section we present the experimental results 
showing the performances of our methods for feature 
point tracking. 
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4.1 Tracking by Point Transfer 

Absol Mean (pxls) 
MSV (pxls) 
Absol Max (pxls) 
Absol Min (pxls) 
% of Subpxl 

An image sequence of a model is acquired by a CCD 
camera mounted on an active vision platform with 
multiple translating and rotating axes [5]. Figure 3 
is the first image in the sequence. Twenty-two black 
dots are marked on the face of the model to serve as 
feature points in the experiments. The marks are la- 
beled with numbers for their identification. 0.53 0.48 0.50 

0.62 0.58 0.61 
1.57 1.54 1.45 
0.07 0.02 0.03 

87.5% 90.6% 87.5% 

Figure 3: The first image of the image sequence. Num- 
bers serve as the labels for the feature points. 

To verify the accuracy of the algorithm on track- 
ing by transfer using affine invariants proposed in Sec- 
tion 3.3, points 2, 11, 13, 21 are selected for the epipo- 
lar parameters computation, while points 2, 11, 13, 12  
are for the linear basis construction. Table 1 gives the 
statistics for transfer accuracy in three typical frames. 
About 90% of the transfers has subpixel accuracy and 
the average transfer error is also less than one pixel. 
Such accuracy is sufficient for many visual tasks, such 
as shape from motion. 

As a comparison, an experiment of feature point 
transfer using the method of Barrett described in Sec- 
tion 2.1 is described below. It should be noted that 
this is not a tracking algorithm and the experiment 
on the practical tracking algorithm derived from the 
Barrett invariant is described in Section 4.2. Assum- 
ing a perspective camera model, points 1, 2 ,  3 ,  4, 5 ,  
6, 18, 19 are taken as the set of eight control points 
with the rest as test points on the head model shown 
in Figure 3. The mean absolute error is about 0.58 

pixels with 80% of all transfer are having subpixel er- 
rors. This accuracy is close to that of the affine case 
above. 

Table 1: Statistics for Affine Transfer 
Statistics 
Arith Mean (pxls) I 0.15 I -0.17 I 0.14 

I Image 2 I Image 3 I Image 4 

To further demonstrate the performance of the 
affine transfer method, edges obtained by zero- 
crossing technique in the first image are tracked over 
the image sequence using the proposed method. Fig- 
ure 4 illustrates the tracking results. From the pictures 
in the figure we can see that the overall accuracy is 
very good. However, the five control points must be 
visible in every images in the method. 

4.2 Tracking by Point Identification 
To demonstrate the method for identifying the points 
sparsely distributed in sequential images, the same im- 
age sequence is applied here. Points 1, 2, 3, 4, 6, 12, 
18, and 19 are picked out to  serve as the control points. 
Except for Point 17 and 20, the remaining 12 points 
are correctly tracked over the image sequence by the 
method described in Section 2.2. In other words, these 
points are correctly identified in the sequence. 

5 Conclusions 
In this paper, the geometric invariants both in per- 
spective and affine projective cases are considered in 
the application of point feature tracking from an im- 
age sequence. As for the perspective case, Barrett’s 
invariant method is extended in terms of Hough trans- 
formation technique to the application case where no 
correspondences over the image sequence are known 
for a set of detectable points except for the eight con- 
trol points. The trajectories of the spares points are 
reliably determined by the extended method. 

A novel method of image point transfer using affine 
invariants is proposed. This is a very efficient and reli- 
able algorithm for tracking not only detectable feature 
points, but also every image point of an image (de- 
noted as the reference image) in an image sequence. 
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Figure 4: Feature point transfer over the image se- 
quence. (a), (b), (c), (d) are the first four images of 
the sequence. The edge points in the first image are 
correctly transfered into the other images in the se- 
quence. 

The transfer of an image point to a target image can 
still be made even if the corresponding real image 
point is occluded in the target image. This is ex- 
tremely useful for shape from motion or model build- 
ing of 3D objects. For this algorithm to  work, 4 points 
in general positions in space must first be tracked cor- 
rectly throughout the image sequence a priori by a 
conventional technique. Further, the correspondence 
of an additional fifth feature point must be estab- 
lished between two images. These two conditions are 
very modest as these 5 points have to be tracked any- 
way if another method is used for tracking. Signif- 
icantly, 90% of the locational accuracy of the image 
point transfers is within one pixel with the maximum 
error less than 1.6 pixel. This is a practical method 
which can do accurate and reliable dense image points 
tracking by transfer. 
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