
Frame-level Temporal Calibration of Video Sequences from
Unsynchronized Cameras by Using Projective Invariants

Senem Velipasalar Wayne Wolf

Electrical Engineering Department Electrical Engineering Department
Princeton University Princeton University
Princeton, NJ 08544 Princeton, NJ 08544

svelipas@princeton.edu wolf@princeton.edu

Abstract

This paper describes a new method for temporally cali-
brating multiple cameras by image processing operations.
Existing multi-camera algorithms assume that the input
sequences are synchronized either by genlock or by time
stamp information and a centralized server. Yet, hardware-
based synchronization increases installation cost. Hence,
using image information is necessary to align frames from
the cameras whose clocks are not synchronized. Our
method uses image processing to find the frame offset be-
tween sequences so that they can be aligned. We track fore-
ground objects, extract a point of interest for each object
as its current location, and find the corresponding location
of the object in the other sequence by using projective in-
variants in P 2. Our algorithm recovers the frame offset
by matching the tracks in different views, and finding the
most reliable match out of the possible track pairs. This
method does not require information about intrinsic or ex-
trinsic camera parameters, and thanks to information ob-
tained from multiple tracks, is robust to possible errors in
background subtraction or location extraction. We present
results on different sequences from the PETS2001 database,
which show the robustness of the algorithm in recovering
the frame offset.

1. Introduction
There is an increasing interest in multi-camera systems, as

one camera provides only limited amount of information.
A single camera has limited field of view (FOV) and can-
not cover a wide enough area. Certain applications, such as
monitoring of areas for surveillance and statistics gathering
purposes, require the coverage of larger areas and longer
tracking times. In addition, occlusion, which can be an im-
portant problem for a single camera, may be overcome by
using multiple cameras.

Having synchronized video inputs is very important for
multi-camera systems. For example, a multi-object multi-

camera tracking method is presented by Khan and Shah in
[1], where the video sequences need to be synchronized to
be able to perform consistent labeling, and to find the corre-
spondences between the tracks in different views. Another
multi-camera tracking system is presented by Cai and Ag-
garwal in [2] which needs synchronized video streams.

Temporal calibration identifies corresponding frames in
several video sequences captured by different cameras. A
low-level method for temporal calibration is synchroniza-
tion which forces cameras to capture the corresponding
frames at the same time by having a master clock. A generic
temporal calibration method, based only on image infor-
mation, provides a solution for cameras without a common
clock as well and removes the need for special equipment
and hardware.

Existing systems use either genlock or time stamp in-
formation and a centralized server to synchronize cam-
eras. However, systems using centralized servers are too
expensive to install in most environments, as they require
overly long cables to run between cameras, and installa-
tion cost is a major concern in real-world surveillance sys-
tems. Hardware-based solutions require special equipment
and place limits on the lengths of video cables. Using image
information is a better way to align the frames from cameras
whose clocks are not synchronized.

An approach in Fourier domain has been presented by
Kuthirummal et al. [3], which, however, needs to compute
weak calibration in the form of the trilinear tensor before
alignment, thus requires at least 7 stationary correspond-
ing points in three views. In addition, a point needs to be
tracked over a number of frames in three views. Lee et al.
[4], use geometric constraints to align the tracking data in
time. This method requires the knowledge of the intrin-
sic camera parameters, and accuracy can be affected by the
height of the objects, thus by their distance to the cameras.

A robust and efficient method, which uses image in-
formation and does not require camera calibration, camera
parameter knowledge, or special equipment and wiring, is

1

4620-7803-9385-6/05/$20.00 ©2005 IEEE

Administrator
Pezza

necessary for temporal calibration of videos from unsyn-
chronized cameras. In order to fill this gap, we propose a
novel method in which foreground objects are tracked, a
point of interest is extracted for each object as its current
location, and the corresponding location of the object in the
other sequence is obtained by using projective invariants in
P 2. This calculated corresponding location, the location
extracted in the current view, and the current frame num-
ber are saved together with the label of the tracker for each
track. Fig. 1 illustrates the problem, and shows the data that

is saved. F
L1

a
i denotes the frame number at which the ith

entry of the ath track with label L1
a is obtained. Thus, for

the first camera F
L1

a
i is equal to F

L1
b

k , meaning there are two
tracks coexisting at this frame. The other camera captures
the same event, and the goal is to recover the frame offset

F
L2

a′
j − F

L1
a

i between the corresponding frames.

Figure 1: The goal is to recover the frame offset F
L2

a′
j − F

L1
a

i

between the corresponding frames captured by different cameras
with unsynchronized clocks.

Using information from multiple tracks provides robust-
ness to possible errors or spurious parts caused by back-
ground subtraction (BGS). The frame offset is recovered
by matching the tracks in different views, and finding the
most reliable match out of the possible track pairs. The ini-
tial matching of the tracks in different views is performed
by minimizing a distance measure between the actual loca-
tions and calculated locations of the objects received from
the other sequence. This method does not require any infor-
mation about the intrinsic or extrinsic camera parameters.

The algorithm has four parts: 1) tracking each object,
extracting its location in the current sequence, and calculat-
ing its corresponding location in the other view; 2) for each
track obtained from the current sequence, finding a possi-
ble match in the saved track list of the other sequence and
recovering an initial frame offset value for this match; 3)
performing a confidence check for each matched track pair
by using the recovered offset value from this match to find
the most reliable matching track pair and candidate offset;
4) refining the result by using the pair of tracks obtained
from the previous step to check the preciseness of the initial
frame offset given by this pair, and to find an offset value
aligning this pair of tracks optimally. The last two steps
make the algorithm very robust against poor BGS perfor-

mance and/or possible location detection errors.
We make the following assumptions: the cameras are

static and have the same frame rate; objects move on a pla-
nar surface; and even if not always, during a short period of
time, the bottom part of the objects are visible. The assump-
tion about the same frame rate can be removed by having a
different matching measure, which will be implemented as
future work.

If camera calibration information is available, points to
use can be picked in different ways, their corresponding lo-
cations in the other views can be found by using the cali-
bration information, and the remaining steps of our method
can still be applied to these points. If cameras are not cali-
brated, then points and their corresponding locations can be
obtained as described in Section 3.1. Thus, the presented
method is generic and can be used in different scenarios.

2 Projective Invariants and Comput-
ing Corresponding Locations

Let’s denote the two cameras, which have been used to cap-
ture the two video sequences, by Ci and Cj , and a point on
the ground plane of Cj by p

(j)
g . The corresponding loca-

tion of p
(j)
g in the view of Ci will be computed by using the

projective invariants.
A projective invariant is a measurement that does not

change under the projective transformations. On the projec-
tive plane P 2, five points in general position, i.e. no three
of them are collinear, have two independent projective in-
variants which are defined as follows [6]:

I1 =
|M (1)

421||M (1)
532|

|M (1)
432||M (1)

521|
=

|M (2)
421||M (2)

532|
|M (2)

432||M (2)
521|

, (1)

I2 =
|M (1)

421||M (1)
531|

|M (1)
431||M (1)

521|
=

|M (2)
421||M (2)

531|
|M (2)

431||M (2)
521|

, (2)

where |M (i)
abc|, {a, b, c} ∈ {1, . . . , 5}, denotes the determi-

nant of the matrix M
(i)
abc for image i, whose columns are the

homogeneous coordinates of the points p
(i)
a , p

(i)
b and p

(i)
c .

The inputs to our system are four pairs of corresponding
points (chosen off-line on the ground plane) in two differ-
ent sequences. These points in the views of Ci and Cj are
denoted by P (i) ={p(i)

1 , ..., p
(i)
4 } and P (j) ={p(j)

1 , ..., p
(j)
4 } re-

spectively. The points in P (j) and another point p
(j)
g , which

is on the ground plane of the scene of Cj , and not collinear
with any of the two points in P (j), form the five points from
which 2 projective invariant values are calculated by using
(1) and (2). Then, the points in P (i) are inserted in (1) and
(2), and these equations are rewritten to solve for the corre-
sponding point of the p

(j)
g in the view of Ci.

2

463

Administrator
Pezza

3 Temporal Calibration Algorithm

As the focus of this paper is temporal calibration, we as-
sume that the foreground objects have been obtained in the
current frame by using a background subtraction (BGS) al-
gorithm of choice, such as mixture of Gaussians method
described in [5] or a derivative of it.

3.1 Obtaining the Calibration Data

Our first step is to identify representative points for the tar-
gets. For each foreground object the aspect ratio is calcu-
lated. The aspect ratio (AR) is defined as the height of the
boundary box divided by its width. As shown in Fig. 2, if
AR ≤ 1, then depending on the difference in the viewing
angles of the cameras, the midpoints of the bottom lines of
the boundary boxes in different views will not correspond
to the same point in the scene, and the distance between a
midpoint and the calculated location received from the other
view will be high with high probability. Even if there is no
frame offset between the sequences, when the correspond-
ing location of the blue midpoint (Fig.2(d)) in the first view
is calculated, the distance between this calculated point and
the midpoint in the first view (Fig. 2(b)) may not be small
as they do not correspond to the same ground point. If the
difference in the viewing angles increases, this problem be-
comes even more pronounced. This may make the algo-
rithm error-prone, and cause the frame offset not being de-
tected correctly.

(a) (b) (c) (d)
Figure 2: Using the midpoint of the bottom line of the bound-

ing box can cause errors. The blue points in (b) and (d) do not
correspond to the same ground location.

In order to avoid the above problem and make the al-
gorithm more precise, we do not use the midpoint of the
bottom line of the boundary box as the current location of
the object. Depending on the value of the AR, we follow
two different sets of steps to detect the point of interest.

If AR ≤ 1, the direction vector of the moving object ob-
tained from the tracking data is used to extract the current
ground location of the object. If the slope of the direction
is negative, the algorithm starts at the left boundary of the
foreground mask and searches, in a small width w, the point
with the smallest y-coordinate, which is picked as the first
anchor point. Then the second anchor point is calculated so
that it has the same y-coordinate as the bottom line of the
boundary box, and the line between the two anchor points
has the same slope as the direction vector. In rare cases,
when direction vector cannot be obtained correctly, second
anchor point may not lie on the boundary box, and if this

happens second anchor point is set to be the lower right cor-
ner of the boundary box. The means of the coordinates of
the anchor points are set to be the coordinates of the loca-
tion of the object. Fig. 3 shows the points obtained by our
algorithm. If the slope of the direction is positive, this time
the algorithm starts at the right boundary of the mask to find
the first anchor point, then the second anchor point and the
location of the object are obtained similarly.

(a) (b) (c) (d)
Figure 3: Points obtained by our algorithm. The green points

are the anchor points, and the blue point is the point used as the
current location of the object.

Corner detection may be another way to find the anchor
points, but it is not preferred for several reasons: 1) it is not
guaranteed that these points will be detected, as one corner
threshold value may not work for all videos; 2) the detected
corners may not be localized correctly; 3) there will still be
a need for the direction vector to be able to pick the right
corners; 4) when it is necessary to perform the temporal
calibration in real-time, a computationally more expensive
method to finely localize these points is not preferable. The
proposed method results in reliable results in recovering the
frame offsets which will be discussed in Section 4.

If AR > 1, then the foreground object is likely to be a
person. Using the midpoint of the bottom line of the bound-
ary box can still be a problem, as a person can carry an item
such as a bag. In this case, detecting the top of the head,
drawing a perpendicular line from it, and using the intersec-
tion of this line with the bottom of the boundary box as the
location of the object will result in better results. However,
for the detection of the top of the head, relying on corner
detection on the silhouette of the object is not always re-
liable. Depending on the object size, and the performance
of the BGS, we may not always have the head or the ex-
act silhouette. Thus, we take the mean of the coordinates
of the points with the highest y-coordinate to find the point
of interest on the top. As these steps are repeated during
the period the object is tracked, there will be information
from multiple frames which will increase robustness to er-
rors caused by BGS. Figures 4 and 5 illustrate the extracted
location points. As seen in Fig. 4, the silhouette of a fore-
ground mask does not always have a corner for the head,
and the proposed method can still be used in these cases.

(a)Frame 470 (b)Frame 470 (c)Frame 474 (d)Frame 474

Figure 4: Extracted points of interest when AR > 1.

3

464

Administrator
Pezza

(a) Frame 330 (b) Frame 345 (c) Frame 370 (d) Frame 380

(e)Frame 330 (f)Frame 345 (g)Frame 370 (h)Frame 380

Figure 5: Blue points are the extracted points of interest. The
pink point in (a)[(e)] is the calculated corresponding location of
the blue point in (e)[(a)]. Similarly for all columns.

Target classification can be used as well, instead of AR,
to decide which set of steps to follow for point extraction.
After the location of the foreground object is extracted in
the current sequence, its corresponding location in the other
sequence is calculated as described in Section 2. Fig. 5
shows both the extracted locations, and the calculated lo-
cations received from the other view. For each track, the
frame number, the coordinates of the current location, and
the calculated coordinates of its corresponding location are
saved as the track data in a data structure where the label
of the tracker is mapped to the track data. These steps are
repeated in parallel for the other sequence as well, and the
saved track information for each sequence constitutes the
temporal calibration data.

If the angle between the two cameras is equal to or larger
than 90◦, then neither the midpoint of the bottom line of
the boundary box nor the scheme here can give the same
location point in two different views for the objects with
AR ≤ 1. In this case, the points obtained from the people
in the scene can still be used. Another solution is to use
more than two cameras.

As will be discussed in Section 4, the algorithm is robust
to possible BGS and location extraction errors, and similar
motion patterns, and performs reliably in case of divided
tracks which may be due to possible occlusions or merges.

3.2 Matching the Tracks

After obtaining the track data for each sequence, each track
in the first sequence is matched with a track in the other by
minimizing a distance measure between the points forming
the tracks and their calculated locations received from the
other sequence.

Let Lc
a be the label of the ath track in the cth camera

view. Thus, c ∈ {1, 2} and a ∈ {1, 2, . . . , Nc} where Nc

is the number of tracks in the sequence captured by the cth

camera (Fig. 1). The track data for Lc
a is in the format dis-

played in (3), where F
Lc

a
i is the frame number for the ith

point in the track, PE(FLc
a

i) = (xLc
a

Ei
, y

Lc
a

Ei
) is the extracted

location of the foreground object at frame F
Lc

a
i in the cur-

rent view, and PC(FLc
a

i) = (xLc
a

Ci
, y

Lc
a

Ci
) is the corresponding

location of PE(FLc
a

i) in the other view, calculated at frame

F
Lc

a
i by using projective invariants. The extracted and cal-

culated locations are shown by blue and pink respectively
in Fig. 1. |Lc

a| = n denotes the length of the track.

Lc
a →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
F

Lc
a

1 , x
Lc

a
E1

, y
Lc

a
E1

, x
Lc

a
C1

, y
Lc

a
C1

)
(
F

Lc
a

2 , x
Lc

a
E2

, y
Lc

a
E2

, x
Lc

a
C2

, y
Lc

a
C2

)
...(

F
Lc

a
n , x

Lc
a

En
, y

Lc
a

En
, x

Lc
a

Cn
, y

Lc
a

Cn

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3)

Let’s denote the Euclidean distance between the points

PC(F
L1

a
i) and PE(F

L2
t

j) by d(PC(F
L1

a
i), PE(F

L2
t

j)), where

a ∈ {1, 2, . . . , N1} and t ∈ {1, 2, . . . , N2}. D(F
L1

a
i , F

L2
t

j) in
(4), which is the sum of two Euclidean distances, will be
called the point-wise distance measure between the points

of tracks in different cameras at frames F
L1

a
i and F

L2
t

j .

D(F
L1

a
i , F

L2
t

j) = d(PC(F
L1

a
i), PE(F

L2
t

j))+

+ d(PE(F
L1

a
i), PC(F

L2
t

j)) (4)

D(F
L1

a
i+Δ, F

L2
t

j+Δ) = d(PC(F
L1

a
i+Δ), PE(F

L2
t

j+Δ))+

+ d(PE(F
L1

a
i+Δ), PC(F

L2
t

j+Δ)) (5)

We formulate the initial track matching problem as:

{t∗, i∗, j∗} = argmin
t∈{1,2,...,N2}

i∈{1,2,...,|L1
a|}

j∈{1,2,...,|L2
t |}

[D(F
L1

a
i , F

L2
t

j) + D(F
L1

a
i+Δ, F

L2
t

j+Δ)] (6)

where, for a track L1
a we find a track L2

t∗ , t∗∈{1, 2, . . . , N2},
and indices i∗ and j∗ in the track data of L1

a and L2
t∗ respec-

tively, so that the total distance measure defined on the right
hand side is minimized over all possible t, i and j. In (6),
Δ ≥ 10. Henceforth, for clarity, t∗ is replaced by a′ and
L2

a′ is used to denote the match of the tracker L1
a, i.e a′ = t∗,

and the tracker L1
a is said to be matched to tracker L2

a′ .

Moreover, D
L1

a,L2
a′

min = D(F
L1

a
i∗ , F

L2
a′

j∗) + D(F
L1

a
i∗+Δ, F

L2
a′

j∗+Δ),
obtained from this match, will be called the match distance
measure. After the tracks are matched, the following data is

saved for the pair: (L1
a, L2

a′ , F
L1

a
i∗ , F

L2
a′

j∗ , OL1
a , D

L1
a,L2

a′
min). The

initial frame offset obtained from this match is OL1
a =

(F
L2

a′
j∗ −F

L1
a

i∗). The same steps are repeated to find the match
of each track.

If, only the D(F
L1

a
i , F

L2
t

j) term in (6) were minimized,
then any object passing through that one location in any di-
rection at another time could cause a wrong match. As-
suming that the frame rates are the same, and imposing the
condition that the object should go from one point to the
other in Δ frames, this problem is avoided. In our scheme,
as will be explained in more detail in Section 3.3, a problem
can occur only if all the objects in the scene move along the
same line with the same speed, i.e. if there is only periodic
motion, which is a highly unlikely case. The Δ is required

4

465

Administrator
Pezza

to be ≥ 10 so that there is enough number of frames be-
tween the passes of an object through two points.

3.3 Confidence Check

The confidence check is performed to find the most reli-
able pair of matched tracks. Using the pair for which the
match distance measure is minimum, among the other track
pairs, as the most reliable match may be an option. How-
ever, there is always a possibility of another object moving
along the same line, i.e. having a very similar motion pat-
tern, at another time. Thus, relying only on the track pair
resulting in the minimum match distance measure may give
the wrong frame offset value. Using the initial offset values
obtained for each match and performing a confidence check
through the tracks for consistency will avoid this problem
and increase robustness and reliability.

Depending on the performance of the BGS, and accu-
racy of the location extraction, some track matches will be
more reliable than the others. Considering this, and with
the goal of saving computing power, only the track pairs
for which the match distance measure is less than or equal
to the median match distance measure are kept. This re-
duces the number of tracks pairs to be used in the confidence
check to half. We also performed experiments by keeping
different number of tracks which showed the effectiveness
of using information from multiple tracks. The results of
these experiments will be summarized in Section 4.

Let T kept in (7) be the list of the saved data for the
matched tracks that are kept. As stated previously, each
tracker label Lc

a, c∈{1, 2} is mapped to its track data which
has the format shown in (3).

T kept =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
L1

a, L2
a′ , F

L1
a

i∗ , F
L2

a′
j∗ , OL1

a, D
L1

a,L2
a′

min

)
(
L1

b , L
2
b′ , F

L1
b

k∗, F
L2

b′
l∗ , OL1

b, D
L1

b ,L2
b′

min

)
...(

L1
r, L

2
r′ , F

L1
r

y∗, F
L2

r′
z∗ , OL1

r, D
L1

r,L2
r′

min

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)

We formulate the confidence check as follows:

O∗ = argmin
O∈{OL1

a,...,OL1
r}

1

|T kept|
L1

r∑
t=L1

a

⎛
⎝1

|t|
|t|∑

e=1

D(F t
e , F t

e + O)

⎞
⎠. (8)

First, OL1
a = (F

L2
a′

j∗ − F
L1

a
i∗) is obtained from the first

matched pair, and used as the candidate offset value. For all
the track points of L1

a, this candidate offset value is added
to their frame number (which is the first element of each
entry of the track data). Then, the points of a track which
exist at the resulting frames in the other sequence are found,
the point-wise distance measure in (4) is calculated for each
point pair, and the mean of the point-wise distance mea-
sures over the point pairs is found. If there are multiple
tracks existing at the resulting frames in the other sequence,
the minimum of the mean point-wise distance measures ob-
tained from these tracks is used. The same is repeated, again

using OL1
a as the candidate offset, for the track points of

L1
b , . . . , L

1
r and the overall mean of the point-wise distance

measure over different tracks is obtained for the offset OL1
a .

Then candidate offset values from the other entries in T kept

are tried as well. The entry whose frame offset value is
equal to the O∗ in (8), is picked as the most reliable track
match, and, unless the last refinement step is preferred to be
performed, the system output is set to be this offset value.

3.4 Refinement of the Frame Offset

The frame offset value obtained at the end of the confidence
check step may be refined as a design choice. Refinement
can be applied if a finer and more exhaustive search is tol-
erated.

The most reliable entry of T kept in (7), obtained after the
confidence check, is the input to the refinement step. Let

this entry be
(
L1

b , L
2
b′ , F

L1
b

k , F
L2

b′
l , OL1

b, D
L1

b ,L2
b′

min

)
. Indices i

and j are found in the track data lists of L1
b and L2

b′ respec-
tively, so that

1

m

i+m−1∑
k=i

D(F
L1

b
k , F

L1
b

k + F
L2

b′
j − F

L1
b

i) (9)

is minimized, where m = min(|L1
b |, |L2

b′ |)/2 is the num-
ber of track points over which we perform the point-wise
distance measure calculation and summation. Then the out-
put of the system for the frame offset value is set to be

F
L2

b′
j − F

L1
b

i .

4 Experimental Results

The proposed algorithm was tested on video sequences
from PETS2001 database. Each set of video is captured by
two cameras, and the sequences are provided as synchro-
nized. An interface was implemented for the experiments
by which the user can enter a frame offset value, and delay
one of the sequences by the entered amount. This way, the
ground truth for the frame offset is known for each experi-
ment. In all the experiments, the value of Δ was 10.

The results obtained without the final refinement step are
summarized in Table 1. Using multiple matched track pairs,
and performing a confidence check among all of them for
consistency provides robustness against the possibility of
different objects following the same motion pattern and di-
rection, and hence increases accuracy. The algorithm is also
robust against divided tracks (due to occlusion and merges),
as when a track is divided into two, the pieces will be treated
as two different tracks, and will still be considered in track
matching step, and potentially in confidence check. As an
example; when the ground truth for the frame offset value
was 400, the initial frame offsets, from the entries of T kept

in (7), were 432, 401, 395, 384, 423 and 393. When all
these offset values were used in confidence check, the off-
set value 401 was obtained from (8), and the rest were elim-
inated.

5

466

Administrator
Pezza

FRAME OFFSETS
Ground Truth 100 200 300 400 500 800 1000

Video 1 System Output 99 199 301 401 501 795 993
Accuracy 99% 99.5% 99.67% 99.75% 99.8% 99.37% 99.3%

Ground Truth 100 200 300 400 500 800 1000
Video 2 System Output 100 200 300 398 498 798 1008

Accuracy 100% 100% 100% 99.5% 99.6% 99.75% 99.2%

Table 1: The results obtained after evaluating the synchronization algorithm with different videos and frame offsets.

Table 2 summarizes the results obtained before and after
applying the refinement step, together with the ground truth.
As can be seen, although refinement provides improvement
to the results, depending on the stability of BGS during the
track, and the accuracy of the location extraction, it may
not always result in a high enough improvement compared
to the computational cost. Hence, as stated previously, this
step becomes a design decision.

Frame Offset Frame Offset Ground
Output Before Output After Truth

Refinement Refinement
199 199 200
501 501 500

Video 1 795 800 800
993 995 1000

Video 2 798 798 800
1008 1007 1000

Table 2: Comparison of the frame offset values obtained before
and after the refinement step.

We also performed experiments by keeping different
number of the track pairs after the matching step, i.e. we
performed experiments with different number of tracks in
T kept of (7). The results obtained without the refinement
step are displayed in Fig. 6. Using multiple number of
matched track pairs, and performing the confidence check
increases accuracy.

Figure 6: Using multiple number of matched tracks, and per-
forming the confidence check increase accuracy.

Better BGS outputs, and better localization of the four
input point pairs can improve the results even more. As
people become really small in these sets, the BGS is not
always very reliable, and even in this case, the algorithm
shows robustness and high accuracy.

5 Conclusions

We presented a novel and robust algorithm for automatic
frame-level temporal calibration of video sequences from
unsynchronized cameras, which does not require the knowl-
edge of intrinsic or extrinsic camera parameters. The pro-
posed method achieved 99.6% accuracy in the experiments
performed with different videos and frame offsets.

We designed our system as a temporal calibration mod-
ule built upon background subtraction (BGS). The algo-
rithm is robust to errors in BGS unless they are continuous.
Different state of the art approaches can be used to improve
the output of BGS. For example, in the case of shadows,
the input to the proposed algorithm can be fed after apply-
ing shadow removal, as shadows can be a problem when
extracting the ground location of the object.

By performing a confidence check with the initial off-
set values obtained from the matched tracks, the algorithm
shows robustness against possible BGS and location extrac-
tion errors, and similar motion patterns. As multiple tracks
are used, and the most reliable match among them is ob-
tained by confidence check, the algorithm also performs re-
liably in the case of divided tracks which may be due to
possible occlusion and merge cases.

References

[1] S. Khan and M. Shah, “Consistent labeling of tracked objects
in multiple cameras with overlapping fields of view,” IEEE
Trans. on PAMI, vol. 25, no.10, pp. 1355–1360, Oct 2003.

[2] Q. Cai and J.K. Aggarwal, “Automatic tracking of human
motion in indoor scenes across multiple synchronized video
streams ,” Int’l Conf. on Computer Vision, Jan. 1998.

[3] S. Kuthirummal, C.V. Jawahar and P.J. Narayanan, “Video
frame alignment in multiple views”, IEEE Int’l Conf. on Im-
age Processing, vol. 3, pp. 357–360, June 2002.

[4] L. Lee, R. Romano, and G. Stein, “Monitoring activities from
multiple video streams: Establishing a common coordinate
frame,” IEEE Trans. on PAMI, pp. 758–768, Aug. 2000.

[5] C. Stauffer and W.E.L. Grimson, “Adaptive background
mixture models for real-time tracking”, IEEE Int’l Conf. on
CVPR, vol. 2, June 1999.

[6] C.A. Rothwell, Object Recognition Through Invariant Index-
ing, Oxford Science Publications, 1995.

6

467

Administrator
Pezza

