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Abstract—Central catadioptric cameras are imaging devices that use mirrors to enhance the field of view while preserving a single

effective viewpoint. In this paper, we propose a novel method for the calibration of central catadioptric cameras using geometric

invariants. Lines and spheres in space are all projected into conics in the catadioptric image plane. We prove that the projection of a

line can provide three invariants whereas the projection of a sphere can only provide two. From these invariants, constraint equations

for the intrinsic parameters of catadioptric camera are derived. Therefore, there are two kinds of variants of this novel method. The first

one uses projections of lines and the second one uses projections of spheres. In general, the projections of two lines or three spheres

are sufficient to achieve catadioptric camera calibration. One important conclusion in this paper is that the method based on projections

of spheres is more robust and has higher accuracy than that based on projections of lines. The performances of our method are

demonstrated by both the results of simulations and experiments with real images.

Index Terms—Camera calibration, catadioptric camera, geometric invariant, omnidirectional vision, panoramic vision.

�

1 INTRODUCTION

IN many computer vision applications, including robot

navigation, virtual reality, surveillance, teleconferencing,

and image-based rendering, a camera with a quite large

field of view is required. A conventional camera has a very

limited field of view. One effective way to enhance the field

of view of a camera is to combine the camera with mirrors.
There are some representative implementations of cata-

dioptric imaging systems described in [5], [15], [17], [24],

[27]. Recently, Baker and Nayar [2] investigate these

catadioptric systems with respect to a single viewpoint

constraint. Catadioptric systems can be classified into two

classes, central and noncentral, depending on whether they

have a single viewpoint or not [2], [10], [19]. A single

viewpoint is highly desirable because it allows generating
perspective images from the images captured by a central

catadioptric camera as if it were taken with a perspective

camera whose projection center is located at the effective

viewpoint. This paper aims at the calibration of central

catadioptric cameras.

Here is a brief review of the methods proposed by others

for the central catadioptric camera calibration.

1. Known World Coordinates. This kind of methods

uses a calibration pattern with control points whose

3D world coordinates are known. These control

points can be corners, dots, or any features that can

be easily extracted from images. Using iterative

methods, the extrinsic parameters (position and

orientation) and the intrinsic parameters can be

recovered [1], [14], [26]. Note that these calibration

techniques can be used for both central and

noncentral catadioptric cameras.
2. Self-calibration. This kind of calibration techniques

uses only point correspondences in multiple views,

without needing to know either the 3D locations of
space points or the camera locations. Kang [16] uses

the consistency of pairwise tracked point features

across a sequence to develop a reliable calibration

method for a paracatadioptric camera. Geyer and

Daniilidis [12] propose a novel 4� 4 catadioptric

fundamental matrix for paracatadioptric camera and

prove that the image of the absolute conic belongs to

the kernel of this matrix.
3. Projections of lines. This kind of methods uses only

the images of lines in the scene, without knowledge
of any metric information. Geyer and Daniilidis [10]
use images of two sets of parallel lines to find the
intrinsic parameters as well as the orientation of the
plane containing the two parallel line sets. Barreto
and Araújo [3] present a two-step method: First, the
principal point is determined using the intersections
of three catadioptric line images. Second, the
recovered principal point is used to determine the
image of the absolute conic from these line images.
More recently, Geyer and Daniilidis [13] propose
another calibration method for a paracatadioptric
camera using the projective properties of the images
of three lines.

In this paper, we propose a novel calibration method

based on geometric invariants, which provides a unified

framework for the calibration using either images of lines or

images of spheres. The motivations for proposing this novel

method are based on the following facts:

1. Lines and spheres are two common geometric
entities in real scenes, and they are often used for
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the conventional camera calibration [6], [7], [20], [23],
[25]. It is well known that, under central catadioptric
cameras, a line in space is projected into a conic in
the image plane [18], [24]. We further prove that the
projected occluding contour of a sphere in space is
also a conic in the catadioptric image plane. Based
on this fact, we present a unified framework to cover
both the projections of lines and those of spheres.

2. Using the unified framework, we prove that, in
general, the projection of a space line can provide
three invariants whereas the projection of a space
sphere can only provide two when the 3D locations
of the line and the sphere are unknown. From these
invariants, the constraint equations for the intrinsic
parameters can be derived. Therefore, the projec-
tions of either two lines or three spheres are
sufficient to achieve the catadioptric camera calibra-
tion (note that Geyer and Daniilidis [11] only discuss
the number of constraints provided by a line image,
but no actual constraint equations are given).
Different from the methods proposed in [3], [10]
which must use the intersections of line images to
determine the principle point in the first step, our
method directly uses the constraint equations pro-
vided by a single-line or a single-sphere image. One
advantage of our method is that we can perform the
calibration in the case where the minimum number
of line or sphere images is available. Another
advantage of our method is that in the case where
the number of line or sphere images is not sufficient
for full intrinsic parameter calibration (e.g., only one
line image is available), the calibration can also be
done partially. We further prove that the method
proposed in [13] is a special case within our unified
framework.

3. One important contribution of this paper is to

introduce spheres as calibration features for the

central catadioptric camera calibration. Although

lines and spheres are all projected into conics in the
image plane, it is more difficult to extract the

projection of a line with high accuracy than that of

a sphere. The main underlying reason is that, the

projection of a line (usually a line segment in real

scene) is only a small arc of a conic (e.g., about one-

third of an ellipse) but the projection of a sphere is

usually a closed ellipse, and conic fitting using

points lying on a portion of a conic is an error-prone
process. As we know, the accuracy of the estimated

intrinsic parameters highly depends on the accuracy

of the extracted conics. Therefore, sphere images are

preferred in the case where accurate calibration of

central catadioptric cameras is needed.

This paper is organized as follows: Section 2 briefly
introduces a generalized image formation model for central
catadioptric cameras. In Section 3, the invariants and the
constraint equations on the intrinsic parameters provided
by line images and sphere images are derived. Section 4
describes a novel efficient two-stage calibration technique.
Experimental results are shown in Section 5. Finally,
Section 6 presents some concluding remarks.

2 A GENERALIZED IMAGE FORMATION MODEL FOR

CENTRAL CATADIOPTRIC CAMERAS

Baker and Nayar [2] show that the only useful physically
realizable mirror surfaces of catadioptric cameras that
produce a single viewpoint are planar, ellipsoidal, hyper-
boloidal, and paraboloidal. Recently, Geyer and Daniilidis
[11] propose a generalized image formation model for these
central catadioptric cameras. They prove that the central
catadioptric image formation is equivalent to a two-step
mapping via a sphere:

Step 1. A point in 3D space is projected to a point on a
unit sphere centered at the single effective viewpoint. The
unit sphere is called the viewing sphere. Considering a
general 3D space point, visible by a catadioptric camera,
with Cartesian coordinates X ¼ ðXW YW ZW ÞT in the
world coordinate system whose origin is at the single
viewpoint, the projection of X on the viewing sphere is:

XS ¼ XS YS ZSð ÞT¼

XWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

W þ Y 2
W þ Z2

W

q YWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

W þ Y 2
W þ Z2

W

q ZWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

W þ Y 2
W þ Z2

W

q
0
B@

1
CA

T

:

ð1Þ

Step 2. The point XS on the viewing sphere is

perspectively projected to a point m on the image plane �

from another point OC . The image plane � is perpendicular

to the line determined by the single viewpoint O and OC

(see Fig. 1).
This step can be considered as taking image of the

viewing sphere using a virtual camera whose optical center

is located at OC and whose optical axis coincides with the

line determined by O and OC . Once the intrinsic parameters

of the virtual camera are estimated, the intrinsic parameters

of the central catadioptric camera are known. In general, we

distinguish five intrinsic parameters for the virtual camera:

the principal point OP u0; v0ð Þ, the effective focal length
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Fig. 1. The generalized image formations of a point (as illustrated in
Section 2), a line, and a sphere (as illustrated in Section 3) in space are
shown, respectively. A space point is projected to point XS on the
viewing sphere, then projected to m on the image plane � from OC . A
sphere in space is projected to a small circle S on the viewing sphere,
then projected to a conic section CS on the image plane from OC . A line
in space is projected to a great circle L on the viewing sphere, then
projected to a conic section CL on the image plane. The equator of the
viewing sphere is mapped to the dashed circle on the image plane.



fe ¼ OCOPj j, the aspect ratio r and the skew factor s. The
intrinsic matrix of the virtual camera can be written as:

K ¼
r � fe s u0

0 fe v0
0 0 1

2
4

3
5: ð2Þ

The distance, l ¼ OOCj j, can be regarded as another
parameter of the catadioptric camera. Therefore, there are
totally six parameters required to be calibrated. The
projection of XS, i.e., m ¼ x y 1ð ÞT on the catadioptric
image plane �, satisfies:

�m ¼ K
1 0 0 0
0 1 0 0
0 0 1 l

2
4

3
5

XS

YS

ZS

1

2
664

3
775; ð3Þ

where � is an unknown scalar factor. For a catadioptric
camera with a mirror whose surface is a conic section
surface of revolution, it satisfies [11]:

l ¼ 2"

1þ "2
; ð4Þ

where " is the eccentricity of the conic section. The
relationship between " and l for different types of central
catadioptric cameras is shown in Table 1.

3 INVARIANTS OF LINE AND SPHERE IMAGES

In this section, first, the equations of line and sphere images
from a catadioptric camera are derived under a unified
framework. Second, the invariants are obtained from the
geometric properties of the metric catadioptric projections
of lines and spheres. Finally, the constraint equations for the
intrinsic parameters are derived from these invariants.

3.1 Equations of Line and Sphere Images

Definition 1. The metric catadioptric projection is a projection
induced by a central catadioptric camera whose intrinsic
parameters are as follows: r ¼ 1, s ¼ 0, u0 ¼ 0, and v0 ¼ 0.
Correspondingly, the projection induced by a central cata-
dioptric camera whose intrinsic matrix is defined by (2) is
called the generic catadioptric projection.

We first derive the equations of line and sphere images
under metric catadioptric projection, and then derive the
equations under generic catadioptric projection. For the
case of metric catadioptric projection, the camera intrinsic
matrix can be rewritten as:

KM ¼
fe 0 0
0 fe 0
0 0 1

2
4

3
5: ð5Þ

Under metric catadioptric projection, the origin of the image
coordinate system is located at the principal point, and the
geometric properties of the projections of lines and spheres
can be easily discovered. These geometric properties are
described as invariants in Section 3.2.

The generalized image formations of a line and a

sphere in space are shown in Fig. 1. It is well known that

a line in space is projected to a great circle whereas the

projected occluding contour of a sphere in space is a

small circle on the viewing sphere. We know that the

intersection curve of a plane and a sphere is a circle. The

plane is called the base plane related to the circle. If the

base plane passes through the spherical center, the circle

is a great circle. Otherwise the circle is a small circle.

Assume a small circle, the projected occluding contour of

a sphere on the viewing sphere, lies on a base plane

nx ny nz d0
� �T

, where nx ny nz

� �T
is the unit normal vector

for the base plane, and d0j j is the distance from the origin

O to the base plane, then a point XS YS ZSð ÞT on the

small circle satisfies:

nxXS þ nyYS þ nzZS þ d0 ¼ 0
X2

S þ Y 2
S þ Z2

S ¼ 1

�
: ð6Þ

Similarly, a great circle, the image of a line on the viewing
sphere, lies on a base plane nx ny nz 0

� �T
passing through

the origin O, then a point XS YS ZSð ÞT on the great circle
satisfies:

nxXS þ nyYS þ nzZS ¼ 0
X2

S þ Y 2
S þ Z2

S ¼ 1

�
: ð7Þ

Obviously, a great circle is a special case of a small circle
when the distance from the origin to the base plane is zero
(i.e., by setting d0 ¼ 0 in (6), we can obtain (7)). Therefore,
there exists a unified framework to represent the projections
of a line and a sphere on the viewing sphere. Consequently,
the equations for a sphere derived from (6) can be changed
into the equations for a line by setting d0 ¼ 0. Substituting
(5) into (3), we get:

�m ¼ �
x
y
1

2
4
3
5 ¼

fe 0 0
0 fe 0
0 0 1

2
4

3
5 1 0 0 0

0 1 0 0
0 0 1 l

2
4

3
5

XS

YS

ZS

1

2
664

3
775: ð8Þ

Eliminating XS , YS , ZS , and � from (6) and (8), and
rewriting in matrix form, we obtain the quadratic form for
the metric catadioptric projection of a space sphere is:

CS ¼
l2�1ð Þn2

xþ d0�l�nzð Þ2 l2�1ð Þnxny ld0�nzð Þfenx

l2�1ð Þnxny l2�1ð Þn2
yþ d0�l�nzð Þ2 ld0�nzð Þfeny

ld0�nzð Þfenx ld0�nzð Þfeny f2e d20�n2
zð Þ

2
64

3
75: ð9Þ

By setting d0 ¼ 0 in (9), we obtain the quadratic form for the
metric catadioptric projection of a space line:

CL ¼
l2 � 1ð Þn2

x þ l2n2
z l2 � 1ð Þnxny �fenznx

l2 � 1ð Þnxny l2 � 1ð Þn2
y þ l2n2

z �fenzny

�fenznx �fenzny �f2
e n

2
z

2
4

3
5:
ð10Þ
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It is not difficult to prove that (10) is equivalent to the

equation for a line image derived in [11], but (10) has a more

concise form.
In order to derive the equations under generic catadiop-

tric projection, we decompose the camera intrinsic matrixK

defined by (2) into the product of two matrices:

K ¼ KAKM; ð11Þ

where

KA ¼
r s0 u0

0 1 v0
0 0 1

2
4

3
5 ð12Þ

and s0 ¼ s=fe. The matrix KM is defined by (5).
Under metric catadioptric projection, i.e., where the

camera intrinsic matrix is equal to KM, the equation of an

image conic (a projection of a line or a sphere) can be

written as:

mTCm ¼ 0; ð13Þ

where

C ¼
a b d
b c e
d e f

2
4

3
5; m ¼

x
y
1

2
4
3
5:

For the case of generic catadioptric projection, i.e., the

intrinsic matrix K defined by (2), the equation of an image

conic (a projection of a line or a sphere) is represented as:

m0TC0m0 ¼ 0; ð14Þ

where

C0 ¼
a0 b0 d0

b0 c0 e0

d0 e0 f 0

2
4

3
5; m0 ¼

u
v
1

2
4
3
5:

m0 are the pixel coordinates in the image coordinate system.

From the definitions of m and m0, we know m0 ¼ KAm. So,

C ¼ KT
AC

0KA; ð15Þ

or

C0 ¼ K�T
A CK�1

A : ð16Þ

From (9), (10), and (16), we notice that the metric and

generic catadioptric projections of a line and a sphere are

both conics. Since KA is an invertible affine transformation,

C and C0 belong to the same affine classification of conics.

3.2 Invariants of Line and Sphere Images

If a conic

C ¼
a b d
b c e
d e f

2
4

3
5

is the metric catadioptric projection of a sphere in space (or

a line in space as a special case), we intend to find what

constraints the conic must satisfy, and what constraints the

conic can provide for l and fe.

Under metric catadioptric projection, the projection
matrix of the virtual camera is:

P ¼
fe 0 0 0
0 fe 0 0
0 0 1 l

2
4

3
5:

The world coordinate system is established as in Fig. 1.

From Proposition 1 in [21], we obtain the cone determined
by the conic C and the projection center of the virtual
camera OC is:

Q ¼ PTCP ¼
af2e bf2e dfe dlfe
bf2e cf2e efe elfe
dfe efe f fl
dlfe elfe fl fl2

2
664

3
775:

The quadric form of the viewing sphere is:

VS ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

2
664

3
775:

The linear combination of Q and VS is:

H � Qþ �VS ¼
af2e þ � bf2e dfe dlfe
bf2e cf2e þ � efe elfe
dfe efe f þ � fl
dlfe elfe fl fl2 � �

2
664

3
775:
ð17Þ

Consider the pencil of two quadric surfaces Q1 and Q2,
Q1 þ �Q2 represents a quadric surface which passes

through all the common points of Q1 and Q2. The
intersection curve of two quadric surfaces is generally a
quartic curve in space [22]. In our context, the metric
catadioptric projection imposes that the cone Q intersects

the viewing sphere VS at a circle in space (a small circle for
a space sphere or a great circle for a space line). So, there
should exist a base plane containing the circle. Since a pair
of planes (distinct or coincident) can be considered as a

degenerate quadric surface of rank 2 or rank 1 [22], the base
plane should be one of the pair of planes. Therefore, we are
led to examine a special pencil of quadric surfaces which

contains a degenerated member of rank 2 or rank 1. From
the discussion above, we can represent the metric catadiop-
tric projection constraints as follows:

Proposition 1. There exists a scalar factor � which makes H �
Qþ �VS with rank 2 or rank 1, where Q is the proper cone

corresponding to the metric catadioptric projection conic C,

and VS is the viewing sphere.

From the definition of the rank of a matrix, we know, the
rank is less than or equal to 2, if and only if all 3� 3

submatrices of the matrix are singular. Obviously, the rank

of H � Qþ �VS cannot equal 0. Hence, H with rank 2 or
rank 1 is equivalent to all 3� 3 submatrices of H are
singular. Because of the symmetry of H, there are totally
10 equations from the singularity of these submatrices.

From these equations, after eliminating �, we can obtain
two equations for a; b; c; d; e; f; fe; l, which are described as:
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Proposition 2. Under metric catadioptric projection, if the image
of a sphere in space is

CS ¼
a b d
b c e
d e f

2
4

3
5;

there exist two invariants:
Invariant 1. S1 ¼ d bd� aeð Þ � e be� cdð Þ ¼ 0.
Invariant 2. S2 ¼ b bd� aeð Þf2e � e bf � deð Þ l2 � 1ð Þ ¼ 0.

Since the projection of a line is a great circle on the
viewing sphere and the base plane containing the great
circle must pass through the origin, there is no constant
term in the equation of the base plane. Since H is reducible,
and one of its factors is the equation of the base plane, H
cannot contain a constant term, either. From (17), we obtain:

fl2 � � ¼ 0:

From the above equation and 10 equations from the
singularity of all 3� 3 submatrices of H, we obtain:

Proposition 3. Under metric catadioptric projection, if the image
of a line in space is

CL ¼
a b d
b c e
d e f

2
4

3
5;

there exist three invariants:
Invariant 3. L1 ¼ d bd� aeð Þ � e be� cdð Þ ¼ 0.
Invariant 4. L2 ¼ bf þ deðl2 � 1Þ ¼ 0.
Invariant 5. L3 ¼ d bd� aeð Þf2e þ f bf � deð Þ ¼ 0.

From n2
x þ n2

y þ n2
z ¼ 1 and (9), (10), we can easily verify

that Invariants 1~5 are true. The geometric interpretations
of Invariant 1 and Invariant 3 are that one of major axes of
the image conic passes through the origin of the image
plane. This property has been discovered by many
researchers [7], [11]. For a central conic, Invariants 1 and 3
are equivalent to dcx � ecy ¼ 0, where cx; cy

� �
is the center of

the conic [7]. Invariant 5 can be derived from Invariant 4
and Invariant 2. Obviously, Invariants 1~5 do not contain
variables nx, ny, nz, and d0. That means these invariants do
not change no matter where lines and spheres are located in
3D space. It is not difficult to prove that Invariants 1 and 3
are rotation and scale invariants, and Invariants 2, 4, and 5
are rotation invariants. The independency of Invariants 1
and 2 is obvious since Invariant 2 contains parameters fe
and l but Invariant 1 does not. It is the similar reason for the
independency of Invariants 3, 4, and 5. These invariants will
be used to derive the constraint equations for the intrinsic
parameters in Section 3.4.

From above, we notice that, in general, a line image can
provide three invariants (constraints) and a sphere image
can provide two. The reason is that a general conic can
provide five constraints, the orientation of the base plane
containing the great circle corresponding to the space line
has two unknowns (nx; ny; nz; with n2

x þ n2
y þ n2

z ¼ 1), and
the base plane containing the small circle corresponding to
the space sphere has three unknowns (d0 and nx; ny; nz;
with n2

x þ n2
y þ n2

z ¼ 1). In the next section, we will discuss
the invariants provided by the images of lines and spheres
in the degenerated cases.

3.3 Singularities of Invariants

We describe here the singularities of invariants from the
images of lines and spheres. Due to lack of space, we are
only able to give a sketch of the derivations. A first remark
is that singularities occur if and only if the catadioptric
image conics of lines and spheres degenerate into lines or
circles. A second observation is that for these singular cases
there exist necessary and sufficient conditions (see Proposi-
tion 4 and Proposition 5).

Proposition 4. The metric catadioptric image of a line (or a
sphere) in space is a circle, if and only if l ¼ 1 or nz ¼ 1.

Proof. The projection conic

C ¼
a b d
b c e
d e f

2
4

3
5

is a circle, if and only if a ¼ c b ¼ 0.
Necessary: From a ¼ c b ¼ 0 and (10) (or (9)), we can

obtain: l ¼ 1 or nx ¼ ny ¼ 0. Since n2
x þ n2

y þ n2
z ¼ 1, we

have nz ¼ 1.
Sufficient: Substituting l ¼ 1 or nz ¼ 1 into (10) (or (9)),

we can obtain a ¼ c b ¼ 0. tu
Proposition 5. The metric catadioptric image of a line in space is

a line, if and only if l ¼ 0 or nz ¼ 0, and the metric
catadioptric image of a sphere in space is a line, if and only
if l � nz ¼ d0.

Proof. Themetric catadioptric image of a line (or a sphere) in
space is a line, if and only if the base plane corresponding
to the line (or the sphere) passes through the projection
center of the virtual camera OC . The world coordinates of
OC is 0; 0;�lð ÞT . The equation of the base plane corre-
sponding to the sphere is nxX þ nyY þ nzZ þ d0 ¼ 0. So,
the base plane passes throughOC , if and only if l � nz ¼ d0.
By setting d0 ¼ 0, we obtain that the base plane corre-
sponding to the line passes through OC , if and only if
l � nz ¼ 0, i.e., l ¼ 0 or nz ¼ 0. tu

All singular cases derived from Proposition 4 and
Proposition 5 are listed in Table 2. Note that the method
in [13] deals with the calibration of a paracatadioptric
camera using projections of lines in space corresponds to
the singularity Case 1. In this case, a line image is a circle,
and gives rise to three invariants. The two of them are:

a ¼ c b ¼ 0: ð18Þ

Substituting b ¼ 0 and l ¼ 1 into Invariant 5, we obtain the
third one:

f2
e ¼ � f

a
: ð19Þ

From (19), we can derive Proposition 1 in [13] which is a key
proposition in that paper. The derivation is given in the
Appendix.

For Case 3 and Case 4, the centers of these image circles
are all located at the origin of the image plane, then we
obtain:

a ¼ c b ¼ 0
d ¼ 0 e ¼ 0

: ð20Þ

1264 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004



For Case 3, we can get another invariant:

af2
e þ fl2 ¼ 0: ð21Þ

The case where l ¼ 0 and the projections of space spheres
are used for calibration, is not a singular one since the
projection of a sphere is a general conic in this case. A
method for the conventional camera calibration using
sphere images, proposed in [7], is a special case of our
method, since it is well known that the catadioptric camera
with a planar mirror is equivalent to a conventional camera.
If we substitute l ¼ 0 into Invariant 2, we obtain:

fe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e bf � deð Þ
b ae� bdð Þ

s
: ð22Þ

It is not difficult to verify (22) is equivalent to the formula of
the focal length derived in [7].

3.4 Constraints on the Intrinsic Parameters

From (15), we have:

a b d
b c e
d e f

2
4

3
5 ¼

r s0 u0

0 1 v0
0 0 1

2
4

3
5T

a0 b0 d0

b0 c0 e0

d0 e0 f 0

2
4

3
5 r s0 u0

0 1 v0
0 0 1

2
4

3
5:
ð23Þ

Expanding the right side of (23), we obtain:

a ¼ r2a0

b ¼ rs0a0 þ rb0

c ¼ s02a0 þ 2s0b0 þ c0

d ¼ ru0a
0 þ rv0b

0 þ rd0

e ¼ s0u0a
0 þ u0b

0 þ s0v0b
0 þ v0c

0 þ s0d0 þ e0

f ¼ u20a
0 þ 2u0v0b

0 þ v20c
0 þ 2u0d

0 þ 2v0e
0 þ f 0:

8>>>>>><
>>>>>>:

ð24Þ

Since the image conic C0 can be extracted from the actual
catadioptric image using some conic fitting method, the
entries of matrix C0 can be known prior to estimating the
intrinsic parameters whereas the entries of matrix C still
remain unknown. From the discussions in Section 3.2, we
know that, in the nonsingular cases, the entries of matrix C
must satisfy the invariants though these entries are yet
unknown. Substituting (24) into Invariants 1 and 2, we
obtain two constraint equations on the intrinsic parameters
from an image conic of a space sphere. Similarly, substitut-
ing (24) into Invariants 3, 4, and 5, we obtain three

constraint equations on the intrinsic parameters from an
image conic of a space line. There are totally six unknown
parameters to be calibrated: five intrinsic parameters and
one parameter l. It is sufficient to estimate these parameters
if there are six independent constraint equations available.
The six constraint equations can be provided by either two
line images or three sphere images.

For the singular cases presented in Section 3.3, we
substitute (24) into the invariants provided by those image
conics (see Table 2), then we can obtain the constraint
equations on the intrinsic parameters in these cases. Here,
we only discuss how to obtain the constraint equations in
the singular Case 1. Substituting (24) into (18), we obtain
r2a0 ¼ s02a0 þ 2s0b0 þ c0 and rs0a0 þ rb0 ¼ 0. Solving for r; s0,

we have r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b02

a02
þ c0

a0

q
and s0 ¼ � b0

a0 . Substituting (24) into

(19), we have:

� b02

a0
þ c0

 !
f2
e þ a0u2

0 þ2b0u0v0 þ c0v20 þ 2d0u0 þ 2e0v0 þf 0 ¼0:

Since a line image can provide two constraint equations on
r; s0 and one constraint equation on u0; v0; fe, at least three
line images can perform calibration in the singular Case 1.

Table 3 shows the minimum number of line or sphere
images needed to achieve the calibration for different types
of central catadioptric cameras. We assume these space
lines and spheres are all in general position. Note that the
minimum number of space lines for calibration have been
discussed in [11] when the aspect ratio and the skew factor
of the catadioptric camera are known beforehand.

4 CALIBRATION ALGORITHM

In order to efficiently solve the nonlinear constraint
equations on the intrinsic parameters, we present a two-
stage calibration technique for the case where the number of
line or sphere images is greater than or equal to four in the
nonsingular cases.

4.1 Two-Stage Calibration Technique

The two-stage calibration technique is based on the
following two observations.

Observation 1. The six constraint equations on the intrinsic
parameters provided by two line images or three sphere
images are nonlinear. Generally speaking, it is quite hard
to solve systems of nonlinear equations.

Observation 2. The constraint equations on the intrinsic
parameters derived from Invariants 1 or 3 are only on the
parameters r, s0, u0, and v0, but not on l and fe. If there
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TABLE 2
Singularities of Invariants from the Images of Lines and Spheres

“-” means if the image conics degenerate into lines, the corresponding
constraints (invariants) will vanish. “PLS” is the abbreviation for
“Projection of Line in Space,” and “PSS” for “Projection of Sphere in
Space.”

TABLE 3
The Minimum Number of Lines or Spheres for the Calibration

of Different Types of Central Catadioptric Cameras

The meanings of PLS and PSS are the same as those in Table 2. “-”
means calibration cannot be performed, and “*” means only r and s0 can
be recovered.



are four or more sphere or line images, we have four or
more constraint equations derived from Invariants 1 or 3.
Therefore we can use a nonlinear least squares method to
solve r, s0, u0, and v0 provided good initial values of these
parameters are available.

Without loss of generality, we only present here the
two-stage algorithm based on sphere images, the two-
stage algorithm using line images can be constructed in a
similar way.

Stage 1. Compute r, s0, u0, and v0. Given four or more
sphere images, derive the constraint equations from
Invariant 1 (or its equivalent form, dcx � ecy ¼ 0), and
subsequently use Levenberg-Marquardt algorithm to re-
cover r, s0, u0, and v0 from these constraint equations. The
initial estimations will be discussed in the next section.

Stage 2. Compute l and fe. Substituting the results of r,
s0, u0, and v0 obtained in the first stage into (23), and then
substituting the entries of matrix C obtained from (23) into
Invariant 2, we get a quadric equation for the parameters l

and fe. Therefore, in this stage, two sphere images are
sufficient to solve for l and fe using the intersections of the
two quadric curves. For a catadioptric camera, the para-
meter l usually remains constant. If l is known in prior, one
sphere image is sufficient to solve for the parameter fe.

Since the initial guesses of parameters l and fe are not
necessary, we only need to find the initial values of r, s0, u0,
and v0 which will be discussed in the next section.

4.2 Initial Estimations

Similar to [16], the method for finding initial values is to
identify the bounding ellipse of the catadioptric image. This
can be done by using a predefined threshold, finding the
boundary, and fitting an ellipse to the resulting boundary.
Note that the boundary is the projection of the mirror
boundary, and the mirror boundary is a circle. The plane
containing the circle is perpendicular to the optical axis of
the camera and the optical axis goes through the center of
the circle. It is not difficult to prove that this case is
equivalent to the singular Case 4. From Table 2, we know
that the image of the boundary can provide four constraints
as shown in (20). Substituting (24) into (20), and after some
manipulation, the initial values of r, s0, u0, and v0 can be
obtained:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b02

a02
þ c0

a0

q
s0 ¼ � b0

a0

u0 ¼ b0e0�c0d0

a0c0�b02

v0 ¼ b0d0�a0e0

a0c0�b02
;

8>>>><
>>>>:

where the initial values of ðu0; v0Þ is the center of the
bounding ellipse.

5 EXPERIMENTS

We perform a number of experiments with simulated and
real data, in order to assess the performances of our
calibration algorithm. As we know, the accuracy of the
estimated intrinsic parameters highly depends on the
accuracy of the extracted conics. In the first experiment,

we investigate the qualities of direct least squares fitting of
the catadioptric conics of lines and spheres. Then, we
compare two variants of our calibration methods: one based
on geometric invariants of spheres (IS), the other based on
geometric invariants of lines (IL), with the method based on
Properties of Lines (PL) proposed in [3] with simulated and
real data, respectively. In the real experiments, we use a
perspective camera with a hyperbolic mirror, designed by
the Center for Machine Perception, Czech Technical
University, its field of view (FOV) is 217.2 degree, and the
eccentricity of the hyperbolic mirror is " ¼ 1:302. From (4),
we get l ¼ 0:966. Here, we assume that the parameter l is
known beforehand.

5.1 Catadioptric Conic Fitting

The unit normal vector for the base plane corresponding
to a line or a sphere in space can be represented by:
nx ny nz

� �T¼ sin� cos� sin� sin� cos�ð ÞT , where � is
the elevation angle and � is the azimuth angle in the
spherical coordinate system. The value ranges are � :
0� � 180� and � : 0� � 360�, respectively. In this experi-
ment, the FOV of the catadioptric camera is chosen as
180�, so � : 0� � 90�. The intrinsic parameters of the
simulated catadioptric camera are: r ¼ 1, s ¼ 0, u0 ¼ 0,
v0 ¼ 0, and fe ¼ 400. We let the catadioptric camera with
l ¼ 0:966 as an example to illustrate the qualities of fitting
catadioptric conics. Obviously, catadioptric conics from
the catadioptric camera can belong to any type of conic,
such as, ellipse, parabola, hyperbola, etc. Generally
speaking, it is very difficult to extract a conic whose
type is unknown from image with high accuracy. In order
to simplify this problem, we only consider the case where
the catadioptric conics are ellipses. It is well known that a
conic is an ellipse when ac� b2 > 0. From (10), we know
that if a metric catadioptric conic of a space line is an
ellipse, it must satisfy: l2 � 1þ n2

z > 0. So, we obtain
0� � � < 75:0164�. From (9), we know that if a metric
catadioptric conic of a space sphere is an ellipse, it must
satisfy: l2 � 1ð Þ 1� n2

z

� �
þ d0 þ l � nzð Þ2> 0. So, we obtain

0:2585 < d0 � 1 for all �. We wish in this experiment to
investigate the effects that occlusion and eccentricity of
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Fig. 2. The catadioptric conics of lines and spheres. (a) Three line
images with � ¼ 0 and from left to right � ¼ 15; 45; and 70, respec-
tively. (b) Three sphere images with d0 ¼ 0:97, � ¼ 0, and from left to
right � ¼ 0; 35; and 70, respectively. The dashed dark circle represents
the FOV boundary. The black dots in (a) are the sampled points. Note
that, line images undergo the occlusion effects, whereas sphere images
do not.



the ellipse have on the fitting accuracy. Two simulated
images containing the metric catadioptric conics of lines
and spheres are shown in Fig. 2.

The ellipse parameters are expressed as a 5-vector
cx; cy; Rx;Ry; �
� �

, where cx; cy
� �

is the ellipse center, Rx

and Ry are the major and minor semi-axes, respectively, and
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Fig. 3. The results of catadioptric conic fitting for line and sphere images. (a), (b), (c), and (d) for line images. (e), (f), (g), and (h) for sphere images.
“GT” means “Ground Truth.” See text for details.



� is the counterclockwise angle in degrees between the
major axis and the positive X axis. There are many conic
fitting methods described in [28]. Here, a method presented
in [9] for least squares fitting of ellipses is used. The method
is rotation and translation invariant. That means using this
method, the accuracy of ellipse fitting is independent of
center and orientation of the ellipse. Therefore, we select
� ¼ 0� and 0� � � � 70� for all lines and spheres, and d0 ¼
0:97 for all spheres.

On each image ellipse we choose 100 points (or on a
portion of an ellipse when it is the projection of a line, see
Fig. 2a). Gaussian noise with zero-mean and � standard
deviation is added to these image points. The noise levels �
are 0, 1, 2, 3, 4, 5, respectively. For each noise level, we
perform 1,000 independent trials, and the mean values and
standard deviations of these recovered parameters are
computed over each run. We found the estimated results
for major semi-axis and minor semi-axis errors as the
measures have no qualitative difference from those for
center. The similar observation is also stated in [8].
Therefore, only the experiment results of center and
orientation are shown in Fig. 3. Note that Barreto and
Araújo [4] have studied the performances of fitting
paracatadioptric projections of lines.

Finding 1: From Figs. 3a, 3b, 3c, and 3d, i.e., the results of
catadioptric conic fitting for line images, we find that the
mean values of center are degraded very fast with respect to
�. The standard deviations of center first increase but then
decrease with �. The mean values of orientation are very
bad since the estimated orientations are different from the
ground truth even about 90 degrees. The main reason for
these is due to the effects of occlusion. With increasing �,
the occluding partition increases (see Fig. 2a). For � near
70 degree, the curve approximates to a line segment, so the
estimated center is very far from the ground truth. For
� ¼ 0, the ellipse is a circle (i.e., the FOV boundary, see
Fig. 2a), so the estimated orientations in this case are
randomly distributed within 0� � 90�.

Finding 2: From Figs. 3e, 3f, 3g, and 3h, i.e., the results of
catadioptric conic fitting for sphere images, we find that the
mean values and the ground truth of center almost overlap.
From Fig. 3g, the standard deviations of center increase
linearly with the noise level. We find � has relatively little
effect on the accuracy of ellipse center estimation, i.e., the
ellipse center error curves are relatively flat. The mean
values of orientation are almost bounded within �10�. The
reason for these is the image conics for spheres with
complete data. The standard deviations of orientation with

small � are high but then decrease with increasing �. The
reason for these is a conic with small � is very close to a
circle and with small eccentricity, whereas the eccentricity
would increase along with the increasing of �.

Comments: Fitting the catadioptric conics of spheres is
more robust than those of lines. The experiments in [8]
illustrate that the key parameters affecting the ellipse fitting
algorithms’ accuracy is the amount of occlusion and the
qualitative noise level. With complete data, all ellipse fitting
algorithms exhibit a similar degradation in the presence of
increasing noise. From our experiments, we notice that the
eccentricity of an ellipse is another key factor especially
affecting the accuracy of orientation estimation.

5.2 Calibration with Simulated Data

In this section, we first compare ISwith IL and PL, and then

study the performances of IS. As we know the eccentricity

of a catadioptric image conic of a line or a sphere in space is

determined by parameter l and �. When l ! 1, or � ! 0�,

the image conic is close to a circle and has small eccentricity,

and the accuracy of fitting an ellipse with small eccentricity

is not high because of the low accuracy of estimated

orientation. Therefore, we compare the calibration results

based on IS with different parameters l, and also compare

those with different �. There are five different calibration

experiments for comparison as listed in Table 4.
The simulated catadioptric cameras have the following

parameters: r ¼ 1, s ¼ 0, u0 ¼ 500, v0 ¼ 500, and fe ¼ 400.
The parameter l for different catadioptric cameras is shown
in Table 4. We generate two different kinds of images: the
first contains the image conics of space spheres and the
second contains the image conics of space lines. The
variables �, �, and d0 which are used to represent the
3D locations of these lines and spheres with respect to the
camera are uniformly distributed within their valid ranges
as shown in Table 4. The projection of the mirror boundary
is also generated in each image. Since it is difficult to select a
good fixed threshold due to lighting changing and non-
uniformity of directional lighting, we only select about one-
third of the entire ellipse of the boundary to simulate the
actual conditions. The number of curves in each image is 4,
8, or 12, respectively. On each projection curve we choose
100 points. Gaussian noise with zero-mean and � standard
deviation is added to these image points. We vary the noise
level � from 0 to 5 pixels. The conic fitting algorithm
presented in [9] is used here. For each noise level, we
perform 1,000 independent trials, and the mean values and
standard deviations of these recovered parameters are
computed over each run. The estimated results of these
experiments are shown in Fig. 4. Since the performance of
u0 and v0 are very similar, we only show the estimated
results for u0.

Comparison 1: Sphere (Experiment 1) versus Line
(Experiments 2 and 3) The estimated results of r, s0, and
fe in Experiment 1 (IS) are better than those in Experiment 2
(IL). The estimated results of principal point in Experiment 1
are similar to those in Experiment 2. The estimated results
of r, s0, and principal point in Experiment 1 are better than
those in Experiment 3 (PL). Note that the mean values of fe
in Experiments 1 and 3 are varied with respect to noise level
in opposite directions. The main reason for all these may be
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TABLE 4
Five Different Calibration Experiments for Comparison



owe to the different fitting accuracy for line and sphere

images. Therefore, we obtain that calibrating catadioptric

cameras using sphere images (IS) is better than those using

line images (IL and PL).
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Fig. 4. The estimated results of simulated experiments. (a), (b), (c), and (d) for Experiment 1 in Table 4. (e) and (f) for Experiment 2, (g) and (h) for

Experiment 3. See text for details.



Comparison 2: l ¼ 0:966 (Experiment 1) versus l ¼ 0:8
(Experiment 4). The estimated results of principal point and
fe in Experiment 4 are better than those in Experiment 1,
while the estimated results of r, s0 in Experiment 4 are
similar to those in Experiment 1. The main reason for these
is the high accuracy of fitting ellipse with large eccentricity.
Hence, for using IS, the calibration results from a
catadioptric camera with small l are better than those with
large l.

Comparison 3: � : 40� � 70� (Experiment 1) versus � :
20� � 50� (Experiment 5). The estimated results of fe in
Experiment 5 are worse than those in Experiment 1. The
standard deviations of principal point in Experiment 5 are
slightly worse than those in Experiment 1. Other estima-
tions are very similar in Experiments 5 and 1. The main
reason for these is similar to that in Comparison 2.
Therefore, for using IS, the calibration results using spheres
distributed near the edge of the FOV will be better than
those near the middle.

5.3 Calibration with Real Data

The test sphere for the real image experiments is a billiard
ball. The ball is placed in front of a white screen in order to
create high contrast lighting environments. We take images
of the ball using the catadioptric camera described before. A
total of 10 sphere images are taken. For comparison
purpose, 10 images containing line image are also taken.
The experimental images are shown in Fig. 5. The resolution
of these images is 2; 048� 1; 536. Image conic extracting is
accomplished by a software package developed by our lab.
On each line image, only the conic with largest arc length is
selected. In order to obtain unbiased results, these sphere

images or line images should be uniformly distributed
within the image. Among these 10 images (sphere images or
line images), eight of them are selected as a group for
calibration. Due to lack of the ground truth of calibration,
we select FOV of the catadioptric camera as the estimation
to evaluate the accuracy of the calibration results. The
ground truth of FOV is 217.2 degree given by the producer.
The calibration results with real data are listed in Table 5.
The results of FOV show that the calibration results using
sphere (IS) seem be more consistent with the ground truth
of FOV than those using lines (IL and PL).

6 CONCLUSIONS

In this paper, we present a unified framework for the
calibration of central catadioptric cameras based on images
of space lines or space spheres. We show that, in general,
each line image has three invariants, whereas each sphere
image has only two. Some degenerated configurations of
invariants are also investigated, and the derivations seem
to be consistent with those of planar and parabolic cases
which have be derived by other researchers. These
invariants are used to derive the constraint equations on
the intrinsic parameters. A practical two-stage calibration
technique, which divides the intrinsic parameters into two
groups, is proposed in order to efficiently solve the
nonlinear constraint equations for the intrinsic parameters.
Extensive experiments on simulated or real data show that
the sphere-based calibration generally and largely outper-
forms, in terms of both robustness and accuracy, that based
on space lines, which are currently mostly used calibration
entities. The underlying reason of such superiorities of
spheres over lines seems primarily due to different errors
in conic fitting process.

APPENDIX

Under metric paracatadioptric projection, a space line is
projected into a circle CL:

ax2 þ ay2 þ 2dxþ 2eyþ f ¼ 0: ð25Þ

The distance between the center of the circle OL and the
origin of image coordinate system OP is denoted by dL ¼
OLOPj j as shown in Fig. 6, and the radius of the circle is
represented as rL. From (25), we have:
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Fig. 5. Two examples of real images used in our experiments.

TABLE 5
Calibration Results with Real Data



d2L ¼ d2 þ e2

a2
and r2L ¼ � f

a
þ d2 þ e2

a2
: ð26Þ

From (26) and Invariant f2
e ¼ � f

a , we obtain:

f2e ¼ r2L � d2L:

This is Proposition 1 in [13]. Note that for paracatadioptric

camera, the effective focal length in the generalized imaging

model is twice the focal length used in [13].
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Fig. 6. A cross-section of the geometric interpretation of Invariant
f2e ¼ �f=a. Some notations are the same as those used in Fig. 1. The
solid circle represents the viewing sphere. The dashed circle represents
the sphere constructed from the circle CL where CL is chosen as the
equator of the sphere.


