
Multiscale Integral Invariants For Facial Landmark Detection in 2.5D Data 

Adam Slater, Yu Hen Hu* 
Department of Electrical & Computer Engineering 

University of Wisconsin - Madison 
Madison, WI, USA 

{ajslater, yhhu}@wisc.edu 

Nigel Boston* 
Department of Mathematics & ECE 
University of Wisconsin - Madison 

Madison, WI, USA 
boston@math.wisc.edu

 
Abstract— In this paper, we introduce a novel 3D surface 

landmark detection method using a 3D integral invariant feature 
extended from that proposed by Manay et al. for 2D contours. 
We apply this new feature to detect the nose tips of 2.5D range 
images of human faces. Using the Face Recognition Grand 
Challenge 2.0 dataset, our method compares favorably with a 
recently proposed competing method. * 

I. INTRODUCTION 
The area of face recognition is a well-researched 

field, with many thoroughly studied approaches and 
algorithms.  However, the vast majority of this research has 
been in the area of two-dimensional images.  With the 
relatively recent availability of three-dimensional (3D) face 
databases and scanning equipment, 3D face recognition has 
begun to receive much more attention.  While there have been 
a number of proposals in recent years [19] for various systems 
for face recognition using this newly-available three-
dimensional data, very few papers have focused on the initial 
registration and landmark detection stage intrinsic to the 
operation of most of these algorithms.  This paper seeks to 
explicitly address this particular aspect of 3D face recognition 
and presents a novel algorithm for the detection of 3D facial 
landmark points and the registration of 3D facial range 
images. 

This area of facial feature detection and location has been 
receiving increased attention lately, with several differing 
approaches proposed.  One of the earliest and most common 
methods has been the use of local mean and Gaussian 
curvature information [2,3,4,5,6].  These approaches either use 
the curvature to segment the face into regions for recognition 
or attempt to use local curvature to locate feature points for 
registration.  Unfortunately, methods based on local curvature 
information can be unstable due to noisy data and are fairly 
prone to giving false positives.   

A more recent method used by Medioni et al. [7] used the 
ICP (Iterative Closest Point) algorithm for registration.  This 
is a general purpose algorithm for the iterative minimization 
of mean square error when aligning arbitrary point clouds.  
This method, while guaranteed to converge, may converge to 
local minima and is dependent on the assumption that one of 
the datasets to be aligned is a subset of the other and both are 
free from outliers, in the sense that that each point in at least 
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one of the datasets has a valid corresponding point in the other 
[17]. 

The Point Signature[1,8,9] method proposed by Chua and 
Jarvis proposed a method of extracting local features by 
projecting local points onto a plane orthogonal to a local 
approximation of the surface normal vector.  This technique 
was extended by the Spin Image representation [10,11], which 
modified the original technique to include invariance to 
rotations and translations.  A further modification of this 
technique was proposed by Wang et al. [15,16], whose Local 
Shape Map scheme mitigated problems with data loss and 
ambiguousness in the Spin Map calculation.  All of these 
methods, however, rely on the accurate approximation of 
surface normals, which are sensitive to expression variation 
and noise, and all suffer from a relatively poor tradeoff 
between storage required and performance.   

A somewhat similar method, proposed by Xu et al. [12] is 
used as a basis for comparison with the algorithm proposed in 
this paper.  This work relies on calculations of the angle of 
intersection between point normals and vectors to points in a 
local area.  The method reduces the storage requirements of 
the previously discussed algorithms by only retaining the 
mean and variance of each set of intersection angles and by 
using an early filtration method to reduce its number of 
candidate points. 

In this paper, we propose a 3D integral invariant feature 
for 3D surface and apply it to detect the nose tip landmark for 
a given range image of human face. Our method is inspired by 
the work of integral invariant signatures by Manay et al. [13], 
which approximate contour features based on integration, 
rather than differentiation, of local areas. Our approach is also 
influenced by Mortara et al.'s technique of tracing the contours 
of intersection of 3D spheres, similar to a Gaussian curvature 
calculation [14].   

Most prior methods of 3D landmark detection or local 
feature extraction have been very sensitive to small-scale 
variations in the data which can be caused by expression 
variation or noisy data acquisition and suffer from a poor 
storage to performance tradeoff.  Our method aims to rectify 
these difficulties while retaining the discriminative power of 
local feature methods like the point signature or spin image. 

Specific contributions of this work include: 
Formulation of an integral invariant feature over 3D 
surfaces 
Development of an efficient, incremental feature 
extraction method of the proposed 3D integral invariant.  
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An empirical feature dimension selection method using 
linear discriminant analysis.  
A hierarchical multi-modal 3D surface landmark 
detection method for locating nose tip using both 3D 
range image and corresponding 2D color image. 
In the rest of this paper, the proposed 3D surface integral 

invariant will be presented in section II. An efficient 
incremental feature extraction method is discussed in section 
III. Multi-modal, multi-stage pattern classification for nose tip 
landmark detection is presented in section IV.  

II. INTEGRAL INVARIANTS 
Our method is inspired by the work of Manay et al.[13], 

specifically.  However, whereas this prior work focused on 
one-dimensional contours in R2, we extend this method to 
two-dimensional surfaces in R3.   

The method approximates the value of the integral 
invariant signature 

( ) ( , ) ( )I p h p x d x  

where p is a point of interest, x is a point in the local 
neighborhood of p, and d (x) represents an infinitesimal 
geodesic distance on the surface.   represents the surface  
itself, and  represents the volume enclosed by the surface.  
h(p,x) is a kernel function which satisfies 
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where G is a group and gp is the image of p under the group 
action of g in G. It has been shown that any function I (p) 
which satisfies this relationship is invariant with respect to the 
group G.   

In this work, we begin with the three-dimensional analog 
to the special Euclidean invariant kernel proposed in [13], 

( , ) ( ( ) )( )rh p x B p x  

which represents the indicator function of the intersection of a 
sphere Br(p) of radius r centered at the point p with the volume 
enclosed by the surface .  This kernel is invariant with respect 
to the special Euclidean group, which includes any rigid 
transformations of the data, such as translations or rotations.  
This gives rise to the corresponding integral invariant: 
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This integral represents the volume of intersection of a 
sphere of radius r, centered at point p, and volume enclosed by 
the surface .  This new kernel also remains invariant under 
special Euclidean group.

III. FEATURE EXTRACTION 
The single parameter of this invariant is the radius of 

sphere of intersection, r.  To obtain a complete representation 
of each point’s local region, it’s essential to perform this 
calculation for a variety of radii.  However, performing this 
calculation over a scale-space will result in redundant 

information, since each larger scale also contains the 
information from each smaller scale. In order to minimize the 
amount of redundant information contained by the local 
surface representation, it’s necessary to minimize the number 
of repeated calculations between scale levels.  To this end, we 
redefine our kernel function h(p,x) as: 
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where r[k 1] < r[k].  This results in an integral invariant 
equivalent to the volume of intersection of the surface  and a 
spherical shell with interior radius r[k-1] and exterior radius 
r[k]: 
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This function is invariant under the special Euclidean 
group.  As a discrete approximation to this integral, we used 
the middle Riemann sum of the intersection volume.  For each 
point (xp,yp,zp), we approximated this integral as: 
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where A is the area of each point’s local region. In our 
experiments, the data was sampled uniformly over the x-y 
plane, so A was constant.  Although better approximations are 
possible and an area for future research, this was sufficient for 
our implementation.

The local shape of a 3D surface can be represented by a 
feature vector that consists of I  for increasing values of r[k]. 
The extent of k determines the dimension of the feature vector. 
Obviously, the feature dimension is dependent on particular 
type of 3D surfaces to be represented. Hence, it is appropriate 
to determine the feature dimension empirically based on the 
avaiable 3D surface data.  

Specifically, a subset of 100 loosely registered face scans 
taken from face recognition grand challenge V.2.0 data set 
[18] are used as the training data. For each face scan, we 
choose a subsample of the facial surface points including the 
nose tip to compute the 3D features. At each point, we 
calculate I  for r[k] varying from 4mm to 100mm at 2mm 
increments. We assume the feature vectors corresponding to 
the nose tip and those not at the nose tip will form two K 
dimensional probability distributions where K is the feature 
dimension.   

 We then compute the Mahalanobis distance similar to that 
used in Fisher’s linear discriminant analysis between these 
two distributions for each feature dimension K:  
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where m1  and  m2  respectively are the mean vectors of the 
nose and non-nose distribution, and S is the covariance matrix 
corresponding to the non-nose distribution. The larger this 
distance, the more likely the feature vector is able to 
discriminate nose tip from other regions on the facial surface. 
A plot of this distance as a function of the radii used for 
computing the 3D feature is depicted in Figure 1. In the 
current implementation, we chose to retain features of radii 
less than 60mm, because features greater than 60mm appear to 
give little benefit, as shown in Fig. 1.  

 
Figure 1: Class separability based on Mahalanobis 

distance for feature radii from 4mm to 100mm, averaged over 
a training set of 100 faces 

IV. MULTI-MODAL, MULTI-STAGE NOSE TIP DETECTION 
Once the feature dimension is determined, a simple 

quadratic discriminant analysis linear classifier is applied to 
classify the feature vectors into one of two classes: nose tip 
versus non-nose tip. While there are more sophisticated 
classifiers that potentially would yield better performance, due 
to space limitation, we present only linear classification results 
in this paper.  

Since the FRGC database facial range images also include 
hair and clothes, initial tests of the nose-tip detection 
algorithm yielded excessive false positive classifications. 
Fortunately, for each range image, the database also provides 
an aligned color 2D image. Therefore, we employ skin color 
segmentation to restrict the search within the skin-colored 
facial region. This is accomplished with a simple Bayesian 
lookup-table based skin color classifier on the chrominance 
components of the YCbCr color-space. This classifier outputs 
a map of the probability that each point on our surface is 
human skin.   

Secondly, we used a more complex classifier using other 
readily recognizable points on the face.  In developing this 
second classifier, we first determined the average uniqueness 
of each point on several of our training samples using the 
Mahalanobis distance from the mean of the face as a criterion.  

This measurement is shown in Fig. 2.  It became evident that 
the medial canthus (inside eye corner) is an easily classified 
point on the face using our 3-dimensional invariant, due 
largely to its strongly positive curvature and relative 
invariance to expression variation.  Our second classifier uses 
the same local feature discussed earlier to detect the medial 
canthi, then computes the distance from each canthus to each 
nose candidate point.  These distances are then classified using 
a quadratic discriminant to give another probability map.  

 
Figure 2: Average Mahalanobis distance of facial points 

from the mean, evaluated on 100 loosely-registered face scans 
with feature radii from 4mm to 100mm in increments of 2mm 

After computing these three measurements, the integral 
invariant, the Bayesian color probability map, and the medial 
canthus distance probability map, the three are multiplied 
together to give the final conditional probability of each point 
being a nose tip. 

 
Figure 3: Comparison of our classifier and a baseline 

algorithm 

V. EXPERIMENTAL RESULTS 
For our experiments, we used the FRGC 2.0 database of 

4007 2.5D range scans and associated 2D color images of 
human faces.  These scans, although all of the head region, are 
relatively unconstrained, in that many include hair and 
clothing as well as pose and expression variation.  Of these 
range scans, 101 were used as a training set, and the algorithm 

177



was evaluated on the remaining 3906.  In this test, we used 10 
radii for our algorithm, ranging from 4mm to 60mm.  A small 
amount of preprocessing was performed on the data before the 
algorithm was applied, consisting of a median filter and 
removal of very large outlier points, as well as resampling on 
a 1mm square rectangular grid.  For the sake of comparison, 
we also implemented an earlier algorithm proposed by Xu et 
al.[12], chosen for its thorough algorithm description.  The 
parameters used for this algorithm were the same given in the 
paper. 

Figure 3 summarizes our experimental results as a 
cumulative distribution of distances from the manually 
selected nose tip on each range image.  As an illustration of 
the performance of each method, we examined the percentage 
of noses which were detected within 1cm of the manually 
selected position.  Using only the integral invariant, 98.08% of 
these were detected to this tolerance.  With skin color 
segmentation, this improved to 98.52%.  Using the canthus 
distance further improved classification to 99.08%.  Using all 
three classifiers slightly degraded performance to 99.03%, 
which we believe is due to overfitting.  Our baseline method 
determined 45.3% of the noses to this degree of accuracy.  
This was due in part to a high number of false positives due to 
hair and clothing variations and early culling of important 
feature points, possibly due to the density of our range scans 
or a small amount of surface noise. 

VI. CONCLUSION & FUTURE WORK 
This paper presents a novel method for landmark detection 

in 2.5D facial range scans.  This method is based on the 
Integral Invariants of Manay et al., but extends their algorithm 
to 3 spatial dimensions and performs classification over 
multiple scales.  This strategy outperforms other common 
techniques in its resistance to false positives and its low space 
requirements. 

The method presented in this work lends itself very well to 
some future algorithmic optimizations.  First, a cascaded 
classifier seems a logical direction for this work, and would 
improve the efficiency of our feature extraction.  Also, there 
are some implementation details that could benefit from future 
algorithm refinements; for example, at present, our feature 
extraction process iterates over each pixel in a local area 
multiple times for each point extracted.  This should be 
possible in only a single pass, and is an area for future 
improvement.   

Another area for improvement is the algorithm used for 
our discrete approximation to the integral invariant signature. 
Further extensions to this work could include the investigation 
of alternative methods for combining the classifier results and 
choosing feature radii.  A final area of future research would 
be an unconstrained face detection problem on 2.5D data, 
although we know of no appropriate dataset yet in existence. 
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