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ABSTRACT are one family of geometrically invariant features
that was developed recently [1-7].
The method of moving frames, a powerful This paper will briefly review some other

mathematical tool for deriving geometricallyexisting invariant features and will summarize the

invariant functions, is described. A systematicummation invariants developed thus far. Then, it

approach is outlined for the derivation of newwill describe the moving frame method and

members of a family of geometrically invariantpresent a systematic approach for deriving

features using the moving frame method. Thisummation invariants. Some implementation

family of features is called summation invariantissues will also be analyzed. A standard

An example derivation is given to illustrate theexperiment will be defined and used to evaluate

procedure. The current members of this family arthe discrimination performance of the summation

summarized and several implementationnvariants derived so far.

considerations for these features are investigated.

A naming convention is given and a standard test 2. INVARIANT FEATURES

is defined for the purpose of comparing the

discrimination ability of these features. This tisst 2.1. Previous work

used to compare the features derived so far using

the application of face recognition and the Fac®ne of the early geometric invariant features és th

Recognition Grand Challenge (FRGC2.0) datasetmoment invariant [8]. This type of feature is

global in nature, using the whole image, and is

invariant to rotation, translation, and scale, and

some cases even to illumination changes [9]. The

global nature limits the discrimination ability of

Invariant features are an important tool in themornent mvanants_, requiring the_ H1S€ of h_|gher
order moments to improve this ability. The higher

pattern_ regognltlon toolbox.  Objects to be rder moments contain the detail information
recpgnlzed N IMages usually are not ggarant_eed Dout the image. The performance of this class of
be in the sar_ne location, of the_ same orientation, ?nvariant with occlusions is hindered by the global
the same size, nor even with the same shap

Fature of this feature. The higher or
Thus, having a descriptive feature that is invdrian ature of this feature. The higher order moments

. : . .__are more susceptible to being affected by noise,
to geometric transformations, like translation P 9 y

rotation, scale or shear, or that is invariantltofa Which limits their usefulness, and hence the
' ' amount of detail which can be included. Moment

them, is highly desirable. Summation invariam?nvariants have been applied to areas such as
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airplane recognition [10] and Chinese character Integral invariant features are global in
representation [11]. nature, but can be made ‘semi-local’ by changing
Fourier descriptors utilize a set of Fourierthe limits on the integration [18]. This technique
transform coefficients to represent a closed curvevill also increase the size of the feature space an
The normalization of these descriptors to amprove the discrimination ability of these
transformation group results in them beingeatures, as well as allow for handling occlusions.
invariant to transformations within that group. TheThe integral invariant features are derived from
similarity transform is usually used (rotation,‘potentials’ involving integration, instead of
translation and scale), although the affinaerivatives, giving them a decreased sensitivity to
transformation group has also been used [12]. Theise [19]. Another advantage to this invariard is
global nature of the Fourier transform prevents theystematic method of deriving new features.
extraction of localized feature information.Integral invariants have been applied to natural
However, unlike moment invariants, the featuremages (leaves) [18] and fish and hand shapes
space will be inherently large. The higher ordef20].
detail coefficients will tend to be more affected b
noise, so noise immunity can be tuned by2.2. Summation invariant
dropping some portion of the higher order
coefficients. These features have been applied 8ummation invariants share many of the features
airplane recognition [12]. of integral invariants, including being global in
Wavelet based invariants offer bettemature, able to be made semi-local to increase the
localization than Fourier methods and offefeature space and handle occlusions, decreased
multiple resolution levels. Dyadic wavelet featuresensitivity to noise and a systematic method for
with invariance to affine transformations havederiving new invariants. However, summation
been developed [13]. Noise sensitivity isinvariants are defined with potentials that are
adjustable by changing the number of resolutiosummations instead of integrals, so calculating
levels used, i.e., dropping higher resolutiorthem will not involve numerical approximations.
coefficients will improve the noise performance aSummation invariants have been applied to fish
the expense of a loss of detail. Dyadic wavelethapes [1, 6] and face recognition [4-7].
invariants have been applied to airplane
recognition [13] and Gabor wavelet invariants
have been applied to face recognition [14]. 3. SUMMATION INVARIANT
Differential invariant features have been
widely studied and applied. They are local inThe idea of summation invariant is based on the
nature, but the use of high order derivatives imathematical method of moving frames. The
their calculation makes them sensitive to noisenotion of moving frames was first proposed by
Methods to minimize the noise sensitivity haveCartan [21], and later formalized into a systematic
been proposed, such as semi-differentiahethod by Fels and Olver [22, 23]. To understand
invariants [15] and numerical approximationsand use this method, several concepts need to be
[16]. Differential invariants have a large featuredefined. In this section, brief definitions and a
space, which improves discriminationsynopsis of the method in its simplest form are
performance, and their local nature allows thgiven, followed by extensions of the method using
accommodation of occlusions. Differentialjet spaces. Then, a systematic procedure is given
invariants have been applied to medical image®r deriving new families of summation
[16] and face recognition [17]. invariants, a naming convention is proposed and a
detailed example derivation is given.
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potentials k = 1) by dividing byN, the number of

3.1. Cartan’s Method of Moving Frames samples.
Potentials are similar to moments, but

Cartan’s method of moving frames provides anore general. For a discrete functid(x), the
framework for deriving geometric invariants for amoment is defined by:
specific transformation group. Given a manifold, m, = prf(x) 3.2)
M, of dimension,m, and a Lie groupG, of
dimension, r, acting smoothly onM, invariant which can be put in parameterized form as
functions | : M - O meaning thal(gez) = I(z), follows:
for all gOG and zOM , are desired. Moving m, :pr[n]y[n] , (3.3)
frames provide a mechanism for systematically n
deriving these invariant functions. Since movingvhere y = f(x). In this formulation, it is evident
frames are intimately connected to ahat potentialP; is the same am, or Pz = m.
transformation group, any invariants coming fronfExtending to the case of a surfaégj, = mi;.
this method will only be invariant to These observations lead to the following lemma:
transformations  within  that  group, or
transformation groups that are subsets of theeémma: A geometric moment is equal to a
group the invariants were derived under. Th@otential with the last index equal to one. (Note:
concepts discussed here will be illustrated usingthe dimension of the moment is one less than the

simple example consisting of a manifols, = Potential.)
0%, and a transformation grous = SO(2), ' ,
consisting of rotations of angieabout the origin. A parameterized 3D surface I1° can be

A parameterized curvén 02 is a curve described by —a set of  points
where some other variable, or parameter, is uséc(X[m nymp ¥ m}), 1<ms<M, 1<n<

to identify points on the curve. Examples ofN}. In this case, otential Q,jx , of orderl is
parameters include arc-length, time and ordefefined as:

(sample number). A curve describing the motion MON ' ;
of an object, likey = f(x) = ax¥, could be Qi,j,k:zle[m’n]yj[man]z [m,n],
parameterized by time, ag(t) = a(x(t)f. If m=1 =L

samples are taken of a continuous curve, then tha (3.4)

curve is parameterized by where 1< n <N is wherel =1+] +_fk’| andi,j,_ k=0, : ; hich
the sample number. If this curve is transformed A manl_od M, is an Obje.Ct or whic
geometrically, the transformed curve can b&VETY local neighborhood looks like a subset of

described by another set of points parameterizé%'_"cl'dearl space. A 1'.3 manifold is a smooth curve
with no self-intersection. An example of a 2D

by n, {(x{n]. y[n); 1< n <N} such that{x{n], y{n]) manifold is a torus.

is transformed from (x[n], y[n]) for each. The An orbit ©, is the set of all
same idea can bg,e extended to higher dimensioRgansformations of under the action of the given
=9 surface_s - : , transformation group. In the exampie= 0? and
A potential Pi; , of orderkis defined as: G being rotation around the origin, an orbit is the
R, = in [n]yi [n] , (3.1) set of all circles centered on the origin.

A canonical setK, is a subset oM such
where k = i + j, and, j > 0. The average values of that K intersects each orbit of at exactly one

the variables can be recovered from the first orddlPint u. In the example given above, one possible
canonical set would be the x-axis from the origin
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to +wo, since each orbit (circle centered on theonditions are satisfied: 1) they are indeed

origin) would intersect it at only one point. invariant, 2) none of them are redundant, and 3)
A free actionis one where given poings every invariant can be expressed as a function of

and b there is at most one transformation thathem.

sends poina to pointb. An example of action that The number of fundamental invariants that

is not free is the situation wittc = SE(2) can be derived using the moving frame method is

(rotations about the origin by anglé and limited to k, wherek = m-r, (m> r), with m the

translations bya andb in the x andy directions, dimension ofM andr the dimension ofs. Once

respectively) and = 0° . Fora = (1,0) ancb = the moving frame is derived, it can be applied to

(0,1), two of the transformations that will takéo  the remainingk dimensions oM not fixed in the

b are ¢, a, b)= (x/2, 0, 0) and#, a, b)= (0, -1, 1), canonical form to giv& invariant functions.

thus the action is not free. To see how this works, let z =(z.., Zy)

A transformation group G, acting on a be a point on the manifolt, and letw(g, z)=
manifold, M, is a group with smooth action that(wi(9, 2), .., W(9, z))be the explicit formulas for
satisfies the group transformation af(i.e., z, = w,(g, 2)).

ez=z, g°(h°z)= (rh)z, (3.5)  Then the canonical se, will fix r coordinates of
for all zOM, gUG, wheree is an identity N je K={z=c, ...,z =c}, where the ¢s are
element in the group. Examples include Euclideasonstants. The moving frame is found by solving
(rotation and translation) and affine (rotation, W1=Cp, ..., W, =G (3.6)
translation, scaling and shear). for the transformation group parameters. This set

Smooth action of a transformation groupof group parameters is the moving frame since it
means that the group operation is infinitelywill transform any pointz in M to K. The set of
differentiable. In the example, the group action oéquations (3.6) is called thenormalization
rotation about the origin by angtetakes a point equations
(x,y) to a point (x' y), where (;(, y) = ((x-cos® - The invariant functions are derived by

y-sin ), (xsin 6 + y-cos ), which is clearly taking the moving frame and applying it to the
infinitely differentiable. remaining explicit formulas not fixed by, i.e.,

A moving frameis loosely defined as a W1, -, Wm. More formally, the invariant
function of z (wherez is a point on the manifold functions are given by
M) that produces the unique transformation, 11(2) = Wa(p(2), 2),

gU0G, that sends into K. The existence of a
moving frame is dependent on the group action on Ik.(z) :\.N”l(p(z)’ 2) (3.7)
the manifold being free. It is called ‘moving’ and are invariant for ang 1 G. ) _ _
since it is different for each point on the mardfol To see that these functions are invariant,

More formally, it is a smooth map;M->G, such consider two points in M, z and, zelated by a
that p(g-z) =g° p(z) for all gdGand zOM . In transformationhJ G, i.e., Z = hez. These points
are by definition in the same orbit. A moving

frame p(z), derived using (3.6), will take z and z
and transform them to u and where u and'ware
inK, and u = (g,...,G,Wr1(p(2), 2),..., Wn(p(2), 2))
and U = (c,...,GWra(p(Z), 2),..., Wn(p(Z), Z)).
Since z and 'zare in the same orbit, and K by
definition intersects each orbit in only point, the
u = u and hence wi(p(2), 2) = wi+1(p(2), 2), etc.,

the example, a moving frame fir = 0%, andG
being rotation around the origin, is%-whered is
the angle of the poirg with respect to the x-axis,
and where is the x-axis from the origin too

If an invariant functioni(z) is given, then
any function ofl, f(I(z)), is also invariant folG
acting on M. The invariants,ly, ..., ly, are
fundamental invariant$or G acting onM if three

5 of 30 9/24/2007
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and L,...,lx are invariant to all transformations ingeneral, this will not be the case, since usualty t

G. group action will have a higher dimension than
Applying this procedure to the simplethe manifold.
example used in this section, whéMe= 0%, and Consider a new example, whave= [?

G = SO(2) ( rotations of angkabout the origin), andG = SE(2) (rotations about the origin by angle
m=2,r =1 andk = 1. Thus, one invariant can bef and translations by and b in the x andy
derived. LetK ={x|y=0,x=0}, the set of all directions, respectively). The group action in this

points on the positive x-axis plus the origin. Theéxample will map a poinz = (x, y) into a

wi's are given by transformed point = |x, y), where

w, = x[€osf - y[$ing x = x[€osd - y[Bind +a

W, =x[3ing+ylgosy (3:8) y = x[3in6 + y[£osd+b (3.12)
and the normalization equation is

In this examplem = 2,r = 3 andk = -1 and the

Wa =xE;in.6?+ym:osé?:O _ (3.9) group action is not free. This means a moving
where only onev; is made constant since= 1. frame does not exist and the moving frame
~ Solving for 6 gives the moving frame, method cannot be used to find invariants. To
which is overcome this limitation, a manifold must be
N=0g=-tant Y 310 fou.nd Wlth Q|men5|on greater than thg group

'0( ) (xj ( ) action. This is accomplished by generating a jet

The invariant is found by applying the movingspace with sufficient dimension and using it for

frame to w, thew; not used in the normalization deriving the invariants. _ .
equations, giving Traditionally, ajet spaceJ", is a Euclidean

_ 77 space with additional coordinates corresponding
1(2) _Wl('o(z)' %, y)— x> Ty (3.11) to the derivatives of the dependent variablespup t

which is the distance oz from the origin. the A" order:
Intuitively this makes sense, since as a point is x, UMy, (3.13)

rotated about the origin, its distance from thgyhere x represents all the independent variables

origin will remain constant. and u™ represents all of the dependent variables
. . and all partial derivatives up to th& order. This

3.2 Extensions using Jet Space mechanism is used to formally handle derivatives

_ ' when dealing with the action of transformation
The number of fundamental invariants that can bgroups. The additional coordinates provide a

derived using this method kswherek =m —rm  richer description. They also expand the
is the dimension of the manifold andis the  dimensions of the space that applies to the
dimension of the group action. In the example Oparticular problem being addressed, allowing
the previous section, wit = 2 an0! r=1, theR  more invariants to be generated. Applying the
=2 -1= 1 Ifm <, then the action is not free group action to jet space is called prolonging it
and it is necessary to replace the manifdidby a  jnto jet space.

larger-dimensional manifold, namely jet space, The new example used in this section, with
before the moving frame method can be appliedc = -1 il require two derivative terms in the jet
This expansion can be as large as needed — Tﬂﬁ‘ace to achievek = 1and thus to allow

more dimensions added, the greater the number ginerating one invariant. This jet space is giyen b
invariant functions that can be generated. In the 3@ =(x ViV y ) (3.14)

previous section, the example was a case Wheref]

the group action was free, hence the moving framé €€ ¥ denotes the first derivative of V\.”th.
existed and an invariant could be found. |f€SPect taxandys denotes the second derivative

6 of 30 9/24/2007
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of y with respect tok. After prolonging the group where &, Yo) is the initial conditions antl(, is a
action into this jet space, the resulting transfedm set of potentials, defined as a potentdlof order
coordinates for a parameterized curzg) = (x(t), k, where

y(t)) are given_by (3.12) and in'i =x'y! (3.20)
o -dydt _xsing+y, cosd with j # 0 andk =i +j. Thus, forz = V%, the

* dt dx x cosf-y,sind potential is
Yo = iﬂ X Y T X Vi (3.15) Z= LO ydx (3.21)

dxdx  (x cosf -y, sing)’ (see [19] for details). The method of moving
These four formulas are the's for this example.  frames can also be applied to this type of jetspac
Adding more terms to the jet space would allowg derive geometric invariants.
the generation of more invariants. Another approach, summation invariants,
To derive the moving frame for this ytjlizes the moving frame method withet space
example, a canonical s&, must be defined and J" defined as a Euclidean space with coordinates

the normalization equations arising fratnsolved (X[1], Y[1], X[N], Y[N], P™) , (3.22)

for the parameters of the moving frame. A suitablgor the case of a curve, wheP& is all potentials

Kis 3 B . up to and including the 'horder and([K], y[K] are
w,=x=0, w,=y=0, w,=y, =0 points on the curve parameterizedkyyand 1< Kk

(3.16) <N. For a parameterized 3D surfaceliri, the
Solving ford, a andb yields the moving frame corresponding jet space is given by:

@ =tan [ytJ J" = (X[ll], y[l,l] 2[1.1], X[I\/I ,l] y[M ,1]
M 2], 1, N], y[1, N], 1, N], Q™)

%
JXKEYY | | _8:23)

(3.17)  whereQ™ is all potentials up to and including the

X+ Y \/Xt +y! n" order. This jet space definition based on
Substitution of this moving frame into the formulasummations also avoids high order derivatives and
for y_Xx (3.15) gives the invariant noise sensitivity. Its advantage over the integral-

based potentials is that it deals directly with
1(2) :)w“—xt‘?},/;—/( (3.18) discrete data, whereas for the integral approach,
(Xf Y ) the discrete (sampled) data is an approximation to

which is the curvature. the actual data (continuous) and the accuracy will

The derivative jet space provides thede dependent on the sampling rate.
needed dimensionality for applying the moving
frame method and generating invariants3.3 A systematic procedure for deriving
However, the reliance on higher order derivativesummation invariants based on Cartan's
makes the resulting invariants sensitive to noisélethod of Moving Frames
A different approach that addresses this noise
sensitivity uses potentials, which are based oho find summation invariants under a
integrals instead of derivatives, to define the jetransformation groupG, it is necessary to find an
space. This eliminates the high order derivativegppropriate canonical set, which leads directlg to
and hence the noise sensitivity problem. set of normalization equations. Solving these
The integral potential jet spacdy’, is equations for the transformation variables gives a
defined as a Euclidean space with coordinates moving frame. Invariant functions are found by

(X1 y1 )6) yO) V(I"I)) ] (3.19)
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applying this moving frame to the higher ordennvariants. This modified convention is
potentials not used in deriving the moving frame. formalized below:
A procedure for deriving new families of

summation invariants is outlined below and a N5 » where
detailed example derivation using this procedure
Is given in the next section: 1. The variable name indicates mode (e.g.,

n=2D, k=3D).
2. The superscript indicates transformation
group (e.g., E=Euclidean, A=affine,

1. Define the kind of transformation group
(e.g., Euclidean, affine, etc.) and mode

(e.g., 2D, 3D). S=similarity, P=projective, Pp=planar-
_ _ projective).
2. Determine the equations for the 3. The subscripts indicate the potential it

transformed variables and potentials. was derived from (e.g. ‘1,1Ri.,

‘2,0’:P2,o).

. The normalization equation used in the
derivation will need to be stated
elsewhere, as it would be too
cumbersome to include in the naming
convention.

3. Define the canonical set. 4

4. Define the normalization equation from
the canonical set.

5. Find the moving frame from the
normalization equation. (Solve the set of
equations defined by the normalization
equation to get the transformation
variables. May need to use a math solver
program, like Mapl&.)

3.4. Example derivation

An example of deriving a new family of

summation invariants using the procedure given
above follows. The mode used is 2D, the
transformation group selected is Euclidean and the

6. Apply _the moving frame_to hi_gher or_der normalization equation ix[1], y[1], X[N]) = (O,
potentials to get the invariants. (i.e., 0,0,

potentials that were not part of the

o : The original work for the 2D Euclidean
normalization equation.)

transformation group only used the numerator of
the resulting formulas in the experimentation and
for reporting the formulas, since the numerator
and denominator were shown to be relatively
invariant. A relative invariant is invariant to the
group transformation up to a factor that is a
function only of the transformation parameters,
not the object points, i.el(geu) = f(g)I(u). When
classification is performed using a measure such
as normalized cross-correlation, the factors will
cancel. This practice will be used here as well.

7. Verify that they are actually invariant.
Since the theory guarantees invariance,
this step is a sanity check to make sure
no errors were made in the derivation
process.

(Note: It may be necessary to try a different
normalization equation if the one selected is
not solvable or is too complicated to be
practical.)

_ _ _ Euclidean transformation (2D):
The naming convention used in most of

the previous works [1-7] can be modified x] [cods) -sin(@)Tx] [a
slightly to include more information about the [ }_Lin(e) cod6) }[y}[ } (3.24)

I
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2

_ N — N )
Transformed potentials: Poo= vy [n= Z[smHD{ ]+ co 0y + @
n=1 n=1
N =P, [€0g 6+ P, [sif 6+ P, (i cod
P, = , Py = 3.25 )
10 ;X[n] 01 ;y[n] (3.25) +2[P, pI8inG + 20F, blcod+ NIB
(3.30)
Apply Euclidean transformation: Canonical Set/Normalization equation:

Fuo = 330l = 3. (il od6) - sln] sinfe)+ 2 (%0151 X[M])= (0,09 (33D

n=1 n=1

=R, tos(f) - R, Csir(6) + aN (3-26)  (Note: instead ofx[n], could have usedyn] ,

\ \ P10, Pos , etc.) Then solve for the moving frame
Poi = Z}[n] = z(x[n] [3in(6) + y[n] todd)+b) {6, a, B based on the normalization equation (use

n=1 n=1 Maple, Mathematica or similar)(See results in
=B, Bin(8) + B,,[to{ ) + bN (3.27)  Appendix B)

N N Apply the moving frame (i.e., values 6f
Similarly, for P,, = sz[n] y Pa = Zx[n]y[n] , @, b obtained above) to potentials not used in the

" n=l n=l normalization equation to get summation
and P,, :Zyz[n]’ after transformation: invariants using Maple, Mathematica or similar
B symbolic mathematical packages.

Verify the invariance of the derived
_ N, N 2 formulas by applying them to curves that have
P20 =) X [n]= Z[COS@ Xn]-sind3/[n] + a been subjected to the transformation, e.g., define
= = curve and several Euclidean transformations of it
. _ and compute the new summation invariant for
= P, [£0S 6+ Py, [8in° 8 - 2P, [$inO[€0SE gach transformed curve — they should all be the
+2[P,, [Altoss - 2[F,, [a[3ind+ N (@2 same. (Use Matldh or similar.)
The Matlab code to implement this
(3.28) Verification is shown in Appendix C. It first
_ N computes the values for the original curve with
x[n =2 [cos#0f - sig0y h+ dhe denominator term, then computes them for ten
=l random transformations €0<2r, 0<a,b<100)
sin@ X[ n] + cosfCy[ ] + b] without the denominator term. (Note: the original
: . work left out the denominator term, so the
B F;'l(coszé?— Slﬁ0)+( P0” PO'Z)( Sln9D(:0§)experimentation was done without it for the new
+ Fio(bm:oséH a[Birﬂ) invariants to get an equal comparison.) The results
+F3)1(am:036?+ b[BirH)+ N of this test for two random transformations are
' shown below, whereH, corresponds too Hy
(3.29) corresponds tgg 1, etc.:

M=

51,1 =

1
iy

n
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Table 1. List of Summation Invariants derived so fa

Mode | Transform | Normalization Equation | Invariants Derived, ;3 Published Data set
2D Euclidean (xy1,Yn) = (0,0,0) E L,E ,E ,E ,LE 1) [3] 1) FRGC 1.0
LIN ,71,0’,71,0’,71,01,71,0’,7],0 2) [4] 2) FRGC 1.0
3) [5] 3) FRGC 1.0
4) [6] 4) FRGC 1.0/2.0
5) [7] 5) FRGC 2.0
2D Aﬁine (le y11 XN! va PlO! POl) = A 1) [1] SQU'D
(0,0,1,1,0,0) 20 2) [6]
2D Euclidean <) = (0,0,0 E E E E E FRGC 2.0
z) = (0.0.0) Moo M0 M50+ 10
3D Euclidean (0 Y11, Z11 Ymis Zuts KE KE KE 1) [3] FRGC 1.0
Zin) = (0,0,0,0,0,0) 001772010777 1,0,0 2) [5]
3) [6]
E E E FRGC 2.
K110 K101 K011
3D Affine (X1, Y11, Z11, Xz, Y KA
Zy1, Xany Yans Zns Pioo 200 1) [2] 1) 3D cafe face
Poio Pood) = (0, 0, 0, 1, 0,
0,0,1,0,0,0,0) 2) [6]

1. The variable name indicates mode (eng2D, k=3D).
2. The superscript indicates transform group (e.gEUWgtHdean, A=affine, S=similarity, P=projective).
3. The subscripts indicate the potential it was detifrem (e.g., ‘1,1'=R 4, '2,0'=P, ().

run ck_krwl_curve_Eu_sum_inv 4. IMPLEMENTATION CONSIDERATIONS
% krwl_curve_Eu_sum_inv_denom
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35, In applications to pattern classification, an

0.65619, 3.0666, 23.7209) invariant feature is computed from a given object
% krwl_curve_Eu_sum_inv (curve or surface) which may be subject to
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35, geometric transformations such as translation, or
0.65619, 3.0666, 23.7209) rotation. Being an invariant feature, its value
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35, should remain the same before and after the rigid
0.65619, 3.0666, 23.7209) object is subject to the geometric transformation.

The data confirms that the new summatiorAs such, one may evaluate the invariant feature
invariants are indeed invariant to Euclidearbased on the transformed coordinates
transformations. Also, the denominator term had(y[n] 7[ d) without knowing the parameters,

no effect on the values of the summation P b h iinal di
invariants. e.g. 6 a, or b, nor the original coordinates|(]

yin)).
A list of the summation invariants derived

thus far is given in table 1, along with where each In practice, there may be factors which

has been published. Detailed formulas for each a_l_ \l/erseb;. affect thg mvanancelof suhcr:c atfeaturea
listed in Appendix A. Each invariant family is IS Seclion examines several such tactors an

specified by mode, transformation group an&heir affects. The factorfs examineq hgre include
normalization equation. correqundence, spat!al quantlzgtlon .a.fter
geometric  transformation, occlusion, finite
precision arithmetic and geometric scaling. Other
implementation considerations that contribute to
the effectiveness of the invariants for object
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recognition will also be examined, includingexample of this is re-sampling a curve with points
feature dimensionality, non-rigid geometriclocated at equal arc-length points along the curve.
transformations and fusion of results fromThis issue will be examined more fully in the next
multiple regions. section.
Occlusion of all or portions of an object in

4.1. Correspondence of Data Points, Spatial an image can occur in several ways. Sometimes a
Quantization, Occlusion, Finite Precision 3D surface is imaged digitally using a range image
Arithmetic and Geometric Scaling map, which corresponds to a projection of the

surface in a particular direction. When the object
One issue that is prevalent in object recognit®n iundergoes a geometric transformation (e.g.,
that of correspondence, making sure that the samaation), the image of the transformed object may
things are being compared. This issue is aldeave portions of the object that were visible ia th
important in the application of summationoriginal image now occluded by other parts of the
invariants. In [4, 5] optimizing the alignment of object. Extensive translation may also render
the region used for face recognition resulted isome, or all, of the transformed object outside the
improved performance. This optimization wasviewing window. Both of these situations may
implemented by taking the mean of thelead to inaccurate values of invariant features, or
summation invariant images computed fréhe even render the calculation impossible. To address
training images and using the sum of squaretthis concern, the ranges of allowable geometric
differences (SSD) measure to find the closedtansformation have to be restricted to preverst thi
match for each new image compared to the medrom occurring, or measures such as using semi-
training image. When applying summationlocal features (to be discussed in the next sub-
invariants, better results are obtained if measureection) need to be used. This situation also
are taken to insure good correspondence betwemtuires that the correspondence of the data points

objects. for invariant feature calculation must be
In practical applications, the geometricaccurately established.
transformation of an object in an image is not the Another factor that may affect invariance

result of a manipulation of the original data psjnt is numerical issues due to finite precision
but from a manipulation of the object or thearithmetic, such as rounding errors. The original
camera, resulting in a new image of thavorks on summation invariants applied to face
transformed object. In general, this results in acognition [4-7] utilized double precision
different set of sampled data points than thoskoating-point numbers in the calculations. As
obtained by just transforming the original data sdbng as there is no division operation, the
due to the quantization effects of the camera. Thaumerical rounding error accumulation should be
new image of the transformed object will contairof little concern.

points sampled from slightly different locations on Geometric scaling will also affect the
the object than in the original image. This spatiabalues of summation invariants. This factor arises
guantization after geometric transformation mayrom images taken at different distances from the
result in not only the data points being differentpbject or from images taken at different
but also a different number of data points for aesolutions. Either case will result in sample
given region. Both of these changes will adverselgoints at different locations and a different dgnsi
affect the invariance of the summation invariantof sample points. The summation invariant will
One way to alleviate this problem is to re-sampl@roduce different values under these conditions
the transformed curve or surface in the parametésr the same object. To reduce this affect, re-
space rather than the spatial coordinates. Omsampling of the object images can be done to give
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all instances of the object the same density cd dafhe intuition is that the non-rigidness effect will
points. The wide range of possible variationde less prominent over a small region of a large
makes it difficult to quantify this affect in geraér object. As such, the rigid transformation
Another issue that may arise involves theassumption would be more likely applicable in
scaling of the images. The summation invariantsuch a situation. On the other hand, to compute
derived under Euclidean transformations are nagummation invariant over smaller regions would
invariant to scaling, so if the images to beequire better correspondence between the original
compared are of different scales, or if the originaand transformed data points. In face recognition
scale information is lost, then it will be necegsarapplications, improvement was achieved by
to normalize the images to the proper scale to getarefully selecting sub-regions that were more
the best results [4, 5]. This may require reinvariant to expression changes, like the nose
sampling. region [4, 5]. The invariants were then computed
on the sub-region(s) instead of on the whole
image.
Finally, using either multiple sub-regions
4.2. Feature Dimension, Non-Rigid Geometric or multiple invariants and some method of fusion
Transformations and Fusion to obtain the final result was shown useful in
improving the performance of the summation
The original definition of summation invariantsinvariants [5, 7] in face recognition.
produces a single value for an image/object. The
extension to ‘semi-local’ summation invariants [1]
increased the size of the feature space to provide 5. SIMULATIONS
better discrimination capabilities. However, this
requires specifying a window size for the localThe issue of spatial quantization after geometric
computation. Optimizing this window size will transformation will be examined more closely
further improve performance. This technique idere with simulations to illustrate the issues
also useful for dealing with occlusions, since iinvolved. An example curve is shown in figure 1
makes the feature more local in nature and allonaong with the curve resulting from a 36° rotation
comparisons of partial objects (assuming thand translation of the original curve (0’s). The
correspondence is known). curve labeled ‘camera quantization’ (Xx’'s) is
Another factor is non-rigid geometric produced by re-sampling the transformed curve on
transformations, which are caused byhe same grid spacing that the original curve had,
deformations of the object being imaged. Onsimulating the image of the rotated curve obtained
example of this factor is the variation caused bipy a camera.
changes in expression on human faces. These This ‘camera’ is a 1D camera that
transformations will obviously affect the produces an image that is a line, where the x-value
invariance of any summation invariant deriveds the position along the line and the y-valuéhis t
under transformation groupsuch as Euclidean, distance of the object from the camera at that x-
that don't include non-rigid transformations.value. The camera samples the object at regular
Invariants derived under affine or projectiveintervals, producing a quantization of the object
groups would be expected to have a better chancarve. When the object rotates, it is readily
of retaining their invariance. apparent that the image of the object changes in
One way to alleviate this problem is toseveral ways. First, the rotated image is longer in
compute invariant features on a local or semi-locahis example than the original. This affect is
basis over a smaller region of the entire objectaused by the projection of the object onto the x-
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Figure 1 — Quantization effect after transformation

axis (the camera image ‘plane’) being a differenbefore. While this example has more total points,
size. This gives the quantized curve more dath is possible to have a case like this that would
points, 14 instead of 11, than the original. Thidhave the same number of points.
difference will increase the error in the values of This effect of a change in slope of the
summation invariants for this curve. Although it iscurve after transformation on the location of the
likely that the transformed image will have asample points in the image of the curve is clearly
different number of points, it is not guaranteed tgseen on the left-most portion of the curve. The
be the case in general. first camera point is located between the first and
Another difference in the rotated image issecond transformed points and the next camera
that the points on the curve where the imagpoint is between the third and fourth transformed
samples are located changes. The increase points. These changes in location of the data
number of points obviously means that the pointpoints on the curve will change the calculated
are from different locations on the object, butrevevalues of the summation invariants.
if the total number of points was the same after
transformation, the points could still come from Finally, after  transformation  and
slightly different locations. For example, on thequantization, the end points may not be the exact
right half of the original curve, the camera sees same points due to the actual end points lying
relatively steep slope on the object, resulting ilbetween the points of the quantization interval.
relatively few points for that portion, while thefi This can be seen on the left side of the
part has a gentler slope, resulting in relativelyransformed curve where the two end points
more points. After transformation, the situation igoriginal transformed and camera quantized) are
reversed — the right part now has a gentler sloghfferent because the transformed end point falls
and hence relatively more points while the lefbetween the quantization interval points.
part has a steeper slope, with fewer points than
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Figure 2 — Arc-length re-sampling and quantizatioreffect after transformation.

original arc-length re-sampled points after

One technique that will reduce the errotransformation are shown as x’s. The data points
caused by these quantization effects is arc-lengtlsing this method are clearly more accurate than
re-sampling. This is a parameterization of theéhe results without it in figure 1. This method
curve by arc-length and then re-sampling in thaill cancel the effects noted above where the
parameterized domain. The original curve is reaumber of sample points from a given portion of
sampled at points that are equidistant along thee curve varies with transformation. The error
curve. When a new image (of the objectan be reduced, but not eliminated by this
transformed) is obtained, it is also re-sampled aechnique since the end points may be at slightly
equidistant points along the curve, using the santkfferent locations on the curve, which will affect
number of samples as the arc-length re-sampledl of the other re-sampled values. This is theecas
original. This technique is illustrated in figure 2in the example of figure 2.
using the same curves as in figure 1. The original The example curve of figure 1 was
curve is indicated by the piecewise linear curvéransformed over rotation values ranging between
and the equal arc-length re-sampled points amero and 36° (with 51 samples instead of 11 for
shown as x’s. The transformed, quantized pointsnproved performance). At each angle of rotation,
are indicated by a piecewise linear curve and thbe Euclidean summation invariants derived here
original points transformed, quantized aegual were calculated for the transformed curve with
arc-length re-sampled are shown by o’s, while theamera quantization and the transformed, camera
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Table 2 — Quantization errors after transformation— with and without arc-length re-sampling.

Original, then camera quantization - error (%) (camera quant. Vs. original)

Theta, degrees 36 12 108 144 18 216 252 28.8 324 36 Max Min

Hx -6.61 222 1248 642 1345 740 1759 678 2349 1271 2349 2.22
Hy 171 138 2727 3180 3958 4564 5568 5525 6808 6885 6885 1386
Hxx -14.60 332 1097 -2.42 7.19 -5.50 9.72 957 1733 228 11.33 -9.57
Hxy -1.26 614 2235 1748 2727 2345 3868 2583 5083 3859 5083 6.14
Hyy 272 1223 2983 3315 4145 4836 6131 5768 7599 7531 7599 1223

Original , transform, then Camera quantized and arc-length resample vs. original and arc-length - error (%)

Theta, degrees 36 12 108 144 18 216 252 28.8 324 36 Max Min

Hx 816 516 -1.27 -1.79 521 <1126 -625  -14.39 468 -1247 0 -121 -14.39
Hy 454 272 043 112 79 076 -0.22 -1.47 -0.23 018 018 272
Hxx 1586 -10.19 256  -1521  -1030 2158 -1231 -27.10  -928 2374 256 -27.10
Hxy 1196 751 165 -8.69 -6.74  -1179 640  -15.42 484 <1249 -165  -1542
Hyy -9.59 -5.86 100 -328 413 313 136 -4.91 -1.13 224 <100 586

guantized with arc-length re-sampling curveproposal for a standard experiment to use for
These values were compared to the Euclideasomparison purposes is given here.

summation invariants calculated on the original

curve points and to the original curve points afte6.1. Standard experiment

arc-length re-sampling, respectively. As expected,

the two curves displayed errors in the calculations  The application used to make this assessment
The errors are shown in table 2. The camera ré&s face recognition. The original work on
sampled curve had the worst errors, with valuesummation invariants utilized the Face
ranging as high as 76%. The arc-length reRecognition Grand Challenge (FRGC) database
sampled curve had better results, with valueR4]. Most of the early work used version 1.0.
ranging only as high as 27% and with two of th&/ersion 2.0 is more extensive in size and includes
invariants fjp1 and no2) having errors over the variation in expression, and is used in the stahdar
given rotation range of magnitude less than 3%xperiment.

and 6%. The arc-length re-sample technigue The FRGC was designed to provide the
provides better results than using the raw camenacentive and means to achieve a significant
image. In addition, within a family of summationadvance in the state-of-the-art in face recognition
invariants, some features show less susceptibilif24]. It consists of an extensive database of 30,00

to the quantization effects. face images, a set of six challenge experiments
and a standardized experimental against the False
6. PERFORMANCE COMPARISONS Acceptance Rate (FAR). The standard comparison

value is the TAR at a FAR of 0.001 (0.1%).
Invariance does not guarantee distinctiveness, so The experiment consists roughly of the
the discrimination ability of summation invariantsfollowing steps: The raw images are normalized to
must be evaluated experimentally. The previouget them in a consistent pose and size, and are
works did not use a consistent set of experimentstopped to a roughly elliptical shape (see figure 3
so a fair comparison of the discriminationalso figure 4 where the image is rotated to more
performance of the summation invariants cannaasily see the features). The comparison algorithm
be made using the previously published results. & then executed which calculates the features for
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Figure 3 — Normalized face range Figure 4 — Noratized face range image
image. rotated.
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Figure 5 — Raw face range image from Figure 6 Region 5 from [7].
FRGC2.0 database.

each of the normalized face images. The trainingpmparison between images. The experimental
set is used to train the classifier, which is theframework and well-defined experiments provide
used to make a decision on each face in thee mechanism for easy and fair comparison of
validation set. This comparison is done for eachesults from different researchers. The size of the
image against all others, yielding a 4007x400database facilitates  obtaining  statistically
similarity matrix containing values for the relaiv meaningful results.
similarity of each face with each of the others. The experiment used here is experiment 3s,
The experimental framework used in thewhich uses 3D shape images. This portion of the
FRGC is the Biometric Experimentationdatabase contains 943 training images and 4007
Environment (BEE). It uses various scripts andalidation images. The images were taken over the
programs (Java, XML, Perl, C) to define and rurtourse of two academic years. The 3D images
the experiments. The FRGC specifies a baselingere taken under controlled lighting conditions
implementation for each experiment thatwith a Minolta Vivid 900/910 series sensor. The
researchers can modify to implement their owmesulting images are 640x480 pixel range images.
methods. The baseline uses Principal Componeihe variation due to illumination is eliminated for
Analysis (PCA) to derive the features forthis type of image, but variation due to poseiis st
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an issue. A sample of one of the images is showalculations done at each pixel. The window size
in figure 5 below (re-sampled on an equal grid andsed is 21. For 3D summation invariants, the
rotated for better visualization). window size is 17 and no arc-length re-sampling
Results for the experiments are reported vig performed.
Receiver Operating Curve (ROC) graphs. There To minimize the computation burden of the
are three categories, I, Il and Ill, correspondimg similarity calculation, principal component
images taken in the same semester, within trenalysis (PCA) is performed on the resulting
same academic year, and within eighteen montlieature space to reduce its size. The basis vectors
of each other, respectively. These graphs plot tHer the PCA step are calculated from the training
verification rate, or True Acceptance Rate (TAR)set of images. The similarity metric used is the
others. This data is used to generate the ROW@ahalanobis cosine.
graphs. A set of similarity mask matrices The calculation of the summation invariant
determines which values in the similarity matrixfeatures takes place in a C routine in the file
are valid for each ROC graph (1, II, III). ‘uwCommonlinvariants.c’ that is part of the BEE
The set of experiments run in this projectsetup. Implementing the new family of invariants
utilize a sub-region of each face (region 5 asequires modifying that file to include the new
defined in [7]) that is 81x81 pixels (see figure 6)calculations as additional functions and then
This sub-region was selected to reduce the degreedifying the call to the invariant calculation
of variation due to expression. The goal in thigunction for each run so the appropriate invariant
standard experiment is not to get the highess used.
performance possible, but rather to make a relative Comparison of the results is done using the
comparison amongst the invariants. ThereforedfAR value at a FAR of 0.001 for ROC-IIl. A
additional techniques to get higher performancbroader comparison can also be done using the
(like fusion of results from multiple regions) arefull ROC graphs for ROC-Ill, or using ROC-II or
not attempted in the standard experiment. ROC-I.
Taken at face value, the summation invariant
will produce a single value for each face imaget.2. Results
This would be great for invariance, but poor for
discrimination purposes. To enhance th&he summation invariants derived so far (listed in
discrimination capability, an extension to thetable 1) were each used as the feature for the
summation invariant concept was developedgxperiment outlined above. The results from those
making it ‘'semi-local’ [1]. This extension consistsexperiments are summarized in Table 3 below.
of calculating the summation invariant at eacfihe results shown are for ROC-IIl. The ROC
pixel over a window centered at that pixel. Thigraphs for each set are shown in figures 7 - 11.
results in an expansion of the feature space and an The results for the new family of invariants
improvement in the discrimination capability ofderived here are very similar to those for the
the summation invariant. original (e.g., the values for;; match, the
The images are 3D surfaces, but some of thariginal, n;1,0 matches the newy 1, etc.). The only
invariant features are defined for 2D data. This isne that doesn’t follow the pattern is the ngw ,
handled by calculating the 2D feature over avhich is much lower than expected. The results
horizontal 1xN sized window centered on thdor the 2D affiney are similar.
current pixel, then over a vertical Nx1 sized The results for 3D Euclidean are worse than
window centered on the current pixel. Anthose for the 2D invariants. One factor that could
additional processing step is the uniform reaccount for this is the fact that the 2D invariant
sampling with respect to arc-length in thecalculation results in two values for each point

17 of 30 9/24/2007



University of Wisconsin — Madison

0.9+

Verification Rate

0.5¢

0.8}
070"

0.6},

0.4

10

1

0.9+

Verification Rate

0.5¢

0.4

10

Figure 9 — ROC Il graph for 2D affine

Verification Rate

-3 1 0—2

10

False Accept Rate

Figure 7 — ROC lll graph for 2D Euclidean
summation invariants with y(N) = 0.

0.8¢

0.7¢

0.6¢

Verification Rate

eta

20

-3 1 0-2

10"

False Accept Rate

summation invariants.

10

Technical Rege@E-07-05

False Accept Rate

Figue 8 — ROC lll graph for 2D Euclidean
summation inariants with x(N) = 0.

0.9f

0.8+

0.7+

0.6

0.5

0.4

\

107

10"

False Accept Rate

Figure 10— ROC Il graph for 3D Euclidean

summation invariants.

10

Table 3: Results — Comparison of discrimination cagbilities for all summation invariants using face
recognition application.

N1o Mo MN20 N1 No2

2D, Eucl., yN=0 0.5772 0.6821 0.5810 0.7192 0.6811

2D, Eucl., xN=0 | 0.6930 0.5772 0.6812 0.7192 0.4081

2D, Affine 0.6842
KOOl KOlO K100 KllO KlOl KOll

3D, Eucl. 0.4370 0.3746 0.3779 0.4927 0.4749 0.4058
Koo NUMer Kondenom

3D, Affine 0.1548 0.2516
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(one horizontal window and one vertical window)the effects of re-sampling on the calculation of
but the 3D invariant calculation only provides oneother invariants.

value for each point. Another possible reason is
the use of arc-length re-sampling for the 2D
invariants, but none for the 3D case. The 3D
affine invariant performed worse than the 301]
Euclidean. The numerator and denominator of the
3D affine summation invariant were shown to be
relative invariants, so experiments were also run
using each of those. No explanation is known at
this time for the dismal performance of the full[2]
invariant compared to the numerator and
denominator performance.

7. CONCLUSIONS
[3]
The method of moving frames, a powerful tool for
deriving geometric invariant features, was
described. The summation invariant, a recently
developed geometric invariant with a
demonstrated effectiveness in pattern
classification applications, was discussed in the
context of some of the other major geometri¢4]
invariant features. In their semi-local form, these
features have good discrimination capability, but
without the noise sensitivity of the classical
differential-based invariants. The summation
invariants derived so far were summarized and [®]
systematic approach for deriving new features
using the method of moving frames was outlined.
A detailed example derivation was given to
illustrate the derivation procedure and a naming
convention was proposed. Implementation issues
were examined, including techniques for6]
enhancing their effectiveness and factors that
reduce their effectiveness in practical imaging
applications. A standard method for comparing
the discrimination ability of the different
summation invariants was given using face
recognition as the application. [7]
Further work needs to be done to compare
summation invariants with other invariant features
to determine what tasks each is best suited for.
Another area in need of additional exploration is
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Appendix A

Table of Summation Invariant formulas

Euclidean, 2D, (x1,y1,yN) =(0,0,0)

Mo = Po = Py (X(N] = x{1]) + Py, y[N] - y[1]) + N 1] cfft] - x[N]) + N G{a] o] - y[N])

751 =Pox =R YN - y{a) + Py, 1] —{N]) + NN o3t - 4] 3N

750 = Pao =20, ]~ {N]Y” ~{N] ot - i O[N] + i)
~20R, (- MINDME -y N XN o )
+ Pyo (1] - [N])* + Py, Cyla] - y[N])?

+ 207, (yft] - yNJ) ] - x{N])+ N cf{x{(x{1] - x[N]) + (vfa(vfa] - yIND)P?

15 = Pu = Py (VI + 2641 N [N] - 2 [N] 5{a]* + xa]* 5[]
=~ 20y[1° [N+ yINJ /[t - [N * 1))
+ Poy (1] + 2031] [N ] OIN] - 2B N] oy [1]* + y[a]? 1]
- 204J* {N]+ x[N]* ofa] - y[N]* {])
+(Py, = Poo ) - YIND(X —X{N])+ P, ] - XIN)? - (v12] - IN])?)
+ N O] 1] - 1] NN cN] — X{a]) + via] cyN] - via])

7§, = Poz = 20yl {N] - U BIN]) 4P, HyIN] - y{1]) - Py, HiX(N] - 1))
+ Py EQY[]-] - Y[N])2 + P2 [ﬂx[l] - X[N])2
- 20P,, 1] - x[NJ)(v{1] - yINJ)+ N o] {N] - x{N] al)?

Euclidean, 2D, (x1,y1,xN) = (0,0,0)

M50 = Pao = Pyo y[t] - yINJ)+ Py, x(N] - x{1]) + N (1] 3{N] - x[N] cy1)

52 =Pox =P ({4 ~X{N]) + Py, Cyf1] - y{N]) + N xN] - >{a) + N oy cy{N] - i)

M50 = P20 =20P, (1] - N]yIN] 54 - izl 5{N]))
+20Py (XY - (NI tx{N] - y{N] )
+ Pz,o(y[l] - y[N])2 + P2 [ﬂx[l] - X[N])2
+ 2Py, Oylt] - y[N]) dx{N] - 1)) + N dfy[] {N] - y[N] 1))

n& =P = P (YIC[N] - y2[N] - x2[1] - y2 ] + 20y ] 3 N])
+ 20U O[N] 2] - [N ])
+ P, OU(y2[a] + x2[] - y2[N]+ x2[N] - 2 1] {N])
+ 20y {N] cy{N] - yi1])
+(Py = oo o1~ YIND(] - N]) + Py, {yN] - ])” ~({N] - x])?)
+N Q] YNy ?[a] - N] )+ 2 ] SN o N] - )
(1] oy fy?[N] +-4al N -y [ Y] N -+ )
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752 = Poa = 20, ({N] - Xaly?[t] -y y{N] - {al({N] - (1))
+ 2Py, Ty[N] - v ] ] 5{N] - y{a)(yIN] - yID)
+ Pyg (N] = {1])* + Py, cfy[N] - yia?
+ 2P, Hy[1] - yIN])(x] - {N])
+ N I O[N] - 2 1] y{N] 6] + 2 0] e o]
+ 2091 oy[N] o] {N] - 20321 ] N
- 20C[ N]+ [ YN+ y*[a]+ x*[1] - 20y §{N))

Affine, 2D, (x1,y1, xN, yN, P10, P01) = (0,0,1,1,0,0)
(Note : both the numerator and denominator are relative invariants.)

7 2A,o ={P,, [ﬁN [y[l] - P0,1)2 + P, [ﬁN D([l] — Py )2
~ 2P, (N 1] - P, )N B/fi] - R, ) - N dy[1] P, - xfi] P, )2}

AN oN] 1] - X IN]) + P TyINT - i) - Poy COXIN] - L) }

Euclidean, 3D, (x11,y11,z11, yM1, zM1, z1N) = (0,0,0,0,0,0)

X X x[14] x[M /]
YI=RRR||Yy|-T /|, where T = y[l,l] , thenlet A= y[M ,1] and express A in spherical coordinates
z z z[l,l] z[M ,1]
cosg, sing, O sind, 0 cosf,
(ra 02 0a2) , then R, =| —Sing, cosy, 0| ,and R, = 0 1 O , then,
0 0 1 —-cosd, 0 sing,
B, X1, N] B,
let B=|B, |=RR y[l N] —-T | , and defineC =| B, | , then express C in spherical coordinate9¢r ¢.),
B, Z[1,N] B,
1 0 0
andlet R, =|0 cosg. Sinwc . Then R, R;, Rz and T form a moving frame — apply to potentialgéb invariants
|0 -sing cosp

as

shown below.

N _ -
Kfo,o = Z X , whereX is calculated by the transformation given above.
n=1

N _ —
K 5’1’0 = Z y . wherey is calculated by the transformation given above.
=1

N _ —
Kgm = Z Z , wherez is calculated by the transformation given above.
n=1
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Affine, 3D, (x11,y11,z11,xM1, yM1, zM1, xIN, yIN, zIN,P100,P010,P001) = (0,0,0,1,0,0,0,1,0,0,0,0)

K?,o,o ={Q 0,0 (MN(X Y 00 = X00Y 01) + Quo0(Yo1 - Yoo) + Qor0(X 00 - Xo1))®
- 20001, (MN(X 41Y 60 = X 00Y 01) * Qu00(Yo1 = Yoo) + Quro(X oo = Xo1))
(MN(x 01200 - X00201) + Q100(201 'Zoo) + Q001(Xoo - X01))

+ Qozo(MN(X 01400 Xoozm) + Q100(201 'Zoo) + Qom(x 00~ X01))2

- 2Q110(MN(X 01400 ~ Xoozo1) + Q100(201 'Zoo) + Q001(X00 - Xo1))
(MN(ymZoo - YOoZo1) + Q010(Zo1 'Zoo) + Q001(y00 - yOl))

+ ono(MN(y 0100 ~ yoozm) + Q01o(201 'Zoo) + Q001(YO0 - y01))2

- 2Q,0:(MN(X 1Y 60 = X 00Y 01) * Qu00(Y 01 = Yoo) + Qo10(X 0 = X01))
(MN(yooZm - yOleO) + Q010(Zoo '201) + Q001(y01 - yOO))

- MN(QlOO(y01ZOO - y00201) + Qmo(xoozm - X01zoo) + Q001(X01yoo - Xooy01)) 2}
/{(MN(X 00 (Y10201 - y01zlo) * X0 (y01zoo - yoozm) + X01(yoozlo - leZOO)))
*+ Qu00(Y00(Zo1 = Z10) * Y10(Zoo = Z01) * Y01(Z10 ~Z40))

+ Qo10(X00(Z10 ~Z01) + X10(Zo1 =Zg0) * X01(Zoo ~Z40))

+ Q001(Xoo (y01 - le) + X10 (yoo - y01) + X01(y10 - yoo))z}

where, %o=X[1, 1]; ¥o=Y[1, 1]; z0 = 2z[1, 1]; %0 = X[M, 1]; y10 = y[M, 1]; 10 =2[M, 1];
Xo1 = X[1, N]; yo1 = ¥[1, N]; 201 = Z[1, N].
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Appendix B

Maple file— Derivation of moving frame and Summation Invats

#
Curve Euclidean invariant eta_y
g o (x0,y0,x1) = (0,0,0)

HHHV

eqnl: =cos(t heta) *x0-si n(t het a) *y0+a=0:

eqn2: =si n(t het a) *x0+cos(t het a) *y0+b=0:

eqn3: =cos(theta)*x1-sin(theta)*yl+a=0:

sol ve({eqnl, eqn2, eqn3}, {theta, a, b}):

eval (sin(theta)*Px+cos(theta)*Py+b*N, % :simlify(%;

1

B _ 2 2 2
(—yl—i—yO)\/yOz 2y0yl + y1° + x0 22x0x1-|—x1
(—yl+y0)
(—Pxx0+ Pxx1+ Pyyl— Pyy0
+ N x0? — NxOx1 — Ny0oyl + Ny0?)

#
Curve Euclidean invariant eta x
g o (x0,y0,x1) = (0,0,0)

HHHV

eqnl: =cos(t heta) *x0-si n(t het a) *y0+a=0:
eqn2: =si n(t het a) *x0+cos(t het a) *y0+b=0:
eqn3: =cos(theta)*x1-sin(theta)*yl+a=0:
sol ve({eqnl, eqn2, eqn3}, {theta, a, b}):
eval (cos(theta)*Px-sin(theta)*Py+a*N, % :

simplify(%;
Pxyl— Pxy0+ Pyx0— Pyx1 — NxOyl-+ NyOx1
_ 2 2 2
(—yl+y0)\/y02 2y0yl + y1° + x0 22x0x1-|—x1
(—yl+y0)
> #
# Curve Euclidean invariant eta_xx
# g o (x0,y0,x1) = (0,0,0)
#

eqnl: =cos(t heta) *x0-si n(t het a) *y0+a=0:

eqn2: =si n(t heta) *x0+cos(t het a) *y0+b=0:

eqn3: =cos(theta)*x1-sin(theta)*yl+a=0:

sol ve({eqnl, eqn2, eqn3}, {theta, a, b}):

eval (Pxx*cos(theta)”2 + Pyy*sin(theta)”2 - 2*Pxy*cos(theta)*sin(theta) +
2*a*(cos(theta)*Px - sin(theta)*Py) + a"2*N, %:

simplify(%;
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\Y

#
Curve Eucl

HHHV

1
y0? — 2y0yl + y1% 4+ x0% — 2x0 x1 + x12
+ y0? Pxx + y0? N x1% 4+ 2 yOy1 Px x0 + 2 yOPxy x1
+ 2x0x1Pyy0— 2yON y1x0x1
+ 2y0ylPxx1 — 2y0Pxxyl— 2y0Pxyx0 — 2y0x12 Py
+ Pyyx0? + Pyyx1%2 — 2 Pyyx0x1 — 2 Pxyx1yl
— 2y1% Pxx0 + Ny1?x0? — 2 x0% Pyyl + 2 Pxyx0y1
+ 2Xx0x1 Pyyl + Pxxy1?)

(—2y0® Pxx1

sinmplify(numer(%);

—2y0? Pxx1 4 y0O? Pxx + y0? N x1% 4+ 2 yOy1 Px x0
+ 2y0Pxyx1 + 2x0x1Pyy0— 2yONy1x0x1

+ 2y0ylPxx1 — 2y0Pxxyl— 2y0Pxyx0 — 2y0x12 Py
+ Pyyx0? + Pyyx12 — 2 Pyyx0x1 — 2 Pxyx1yl

— 2y1% Pxx0 + Ny1?x0? — 2 x0% Pyyl + 2 Pxyx0y1

+ 2x0x1Pyyl + Pxx yl2

i dean invariant eta_xy

g o (x0,y0,x1) = (0,0,0)

eqnl: =cos(t heta) *x0-si n(t het a) *y0+a=0:
eqn2: =si n(t het a) *x0+cos(t het a) *y0+b=0:
eqn3: =cos(theta)*x1-sin(theta)*yl+a=0:

sol ve({eqnil,
eval ((Pxx -

simplify(%;

eqn2, eqn3}, {theta, a, b}):

Pyy)*sin(theta)*cos(theta) + Pxy*(cos(theta)”2 - sin(theta)”2) +
Px*(b*cos(theta) + a*sin(theta)) + Py*(a*cos(theta) -

1

y0? — 2y0yl + y1% 4+ x0% — 2 x0 x1 + x12 (
— yOx1 Pxx — yOx0 Pyy + yOx0 Pxx — y1x1 Pyy
+ y1x1 Pxx + x0ylPyy— x0ylPxx

+ Ny0®x1 — Nx0°y1 + Pyy0?x0

+ Pyx0 x1% — 2 Pyx0? x1 — 2 Pyy(? x1 — Py x0 y1?
+ nyOxl2 + 2 nyOzyl— nyOyl2 — PxszyO
+ 2 Px x0%y1 + 2 Pxyx0x1 — 2 Pxyy0yl

+ 2PyyOx1yl —2Pxx0x1yl+ N x02y1xl

+ N x0y1%y0 — N y0x1? x0

+ Ny0x1x0? — Nx0yly®? — Ny x1yl

+ Pyx0® — Pxy0® — Pxy x0% — Pxyx12 + Pxyy0?
+ Pxyy1?)

yOox1 Pyy
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# Curve Euclidean invariant eta_ yy
# g o (x0,y0,x1) = (0,0,0)
#
eqnl: =cos(t heta) *x0-si n(t het a) *y0+a=0:
eqn2: =si n(t heta) *x0+cos(t het a) *y0+b=0:
eqn3: =cos(theta)*x1-sin(theta)*yl+a=0:
sol ve({egnl, egqn2, eqn3}, {theta, a, b}):
eval (Pxx*sin(theta)”2 + Pyy*cos(theta)”2 + 2*Pxy*cos(theta)*sin(theta) +
2*b*(sin(theta)*Px + cos(theta)*Py) + b"2*N, % :
sinplify(;
1
y0? — 2y0yl + y1% 4+ x0% — 2x0 x1 + x12
+ 2x0x1 PyyO
+ 2y0yl1Pxx0— 2y0ylPxx1 — 2yONx02y1
+ N x0% x1% 4+ 2 yOPxy x0 — 2 yOPyyyl — 2 yO Pxy x1
+ 2 y0? N x0? + y0? Pyy
+ 2yONy1x0x1 — 2y0? N x0x1 — 2N x03x1
— 2Pxx X0 x1 + 2 Pxyx1yl+ y0? N y1?
+ Ny0* — 2 x0? Pyy0 + 2 x0? Pyyl + 4 x0? Px x1 + N x0*
+ Pxx x0% — 2 Pxyx0yl — 2x0x12Px — 2y0® N y1
— 2x03Px — 2y0® Py
+ 2y0? Pxx1 — 2x0 x1 Pyyl — 2 y0? Px x0
+ 4y0?y1Py — 2y0y1? Py)

(Pxx x12 + Pyyy1?
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Appendix C

Matlab files
Check invariance

% Check the result of

% "krwl_curve_Eu_inv"

% Author: K.R. Widder

% Time-stamp: 11/24/06

% E-mail: widder@wisc.edu

% (C) 2006 by Kerry Widder

% created: 11/24/2006

% adapted from file created by Wei-Yang Lin

clear all;
close all;
clc;

N =70;

theta = 0:pi/3/(N-1):pi/3;

X = cos(theta);

y = sin(theta);

[Ix, ly, Ixx, Ixy, lyy] = krwl_curve_Eu_sum_inv_den

disp('% krwl_curve_Eu_sum_inv_denom’);

disp(['(Ix, ly, Ixx, Ixy, lyy) = (' num2str(Ix) ',
numa2str(ly) ', ' num2str(Ixx) ‘, ' num2str(Ixy

% plot(x,y,'r:"), hold on;
disp('% krwl_curve_Eu_sum_inv');

fori=1:10
theta = 2*pi*rand(1);
t1 = 100*randn(1);
t2 = 100*randn(1);
% disp(['(theta, t1, t2) = (' num2str(theta*360/
% numa2str(tl) ',  num2str(t2) ')
R =[cos(theta) -1*sin(theta); sin(theta) cos
T =[t1t2];
pts = [x;yl;
pts = R*pts + T*ones(1,N);
XX =pts(1,:);
yy =pts(2,); )
[Ix, ly, Ixx, Ixy, lyy] = krwl_curve_Eu_sum_inv
disp(['(Ix, ly, Ixx, Ixy, lyy) = (' num2str(Ix)
num2str(ly) ', ' num2str(Ixx) ', num2str

end
plot(x,y,'r:"), hold off;
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om(x'y");

) " num2str(lyy) )']);

2/pi) ', ...
(theta)];

0oyy);
(Ixy) ', ' num2str(lyy) )]);
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Calculate Summation Invariants

function [Ix, ly, Ixx, Ixy, lyy] = krwl_curve_Eu_su

% krwl_curve_Eu_inv compute Euclidean summation inv

% like Eq. (2.12 - 2.16) in Wei-Yang's thesis, only
% Uses normalization equation: (x(1), y(1), x(N))
%

% [IX, ly, Ixx, Ixy, lyy] = krwl_curve_Eu_sum_inv
% x:NXx1column vector

% vy :Nx1column vector

%

%

% ,where

% (x(1),y(1)) is initial point

% (X(N),y(N)) is end point

% P10 =sum_1"N x(t)

% PO1 =int_1"N y(t)

% P20 =sum_1"N x(t)"2

% P11 =int_1"N X(t)*y(t)

% P02 =sum_1"N y(t)"2

%

% Author:  K.R. Widder

% Time-stamp: 11/24/06

% E-mail: widder@wisc.edu

% (C) 2006 by Kerry Widder

% created: 11/24/2006

% x : N x 1 column vector
%y : N x 1 column vector

N = size(x,1);

P10 = sum(x);
P01 = sum(y);
P20 = sum(x.*x);
P11 = sum(x.*y);
P02 = sum(y.*y);

%I|_1 = N"2*(x(1)"2 + y(1)"2) + P10"2 + PO1"2 - 2*N*
ly =P10*(x(1) - x(N)) + PO1*(y(1) - y(N)) + N*x(1
IX =PO1*(x(N) - x(1)) + P10*(y(1) - y(N)) + N*( x

Ixx = 2*P10*((y(1) - y(N))*(y(N)*X(1) - y(1)*x(N)))
+ 2*POL*(x(1) - x(N))*(y(L)*)(N) - y(N)*x(1
+ P02*((x(1) - x(N))*2) + P20*((y(1) - y(N
+ 2"P11*(x(N) - x(1)*(y(1) - Y(N))...
+ N*(( (y(1)*x(N)) - (x(1)*y(N)) )"2);

Ixy = PLO*(y(1)*(x(N)"2 - y(N)"2 - X(1)*2 -y(1)"
+ PO1*( x(1)*(y(1)"2 + x(1)"2 - y(N)*2 + x(N)
+ (P20 - PO2)*(x(1) - X(N))*(y(1) - y(N))...
+ PLI*( (V(N) - y(1))"2 - (x(N) - X(1))"2)..
+ N*(y(1)*x(N)*(y(1)"2 - X(1)*)(N)) + (x(1)*
X(N)*x(2))...
- (Y(D)"2)*y(N)*(x(N) + x(1)) );

lyy = 2*P10*((X(N) - X(1))*((y(1)"2) - y(N)*y(1) -
+ 2*PO1*((y(N) - y(1))*((x(1)"2) - X(N)*x(1) -
+P20*((x(N) - x(1))"2) + PO2*((y(N) - y(1))"2)
+ 2*P11X((y(1) - y(N))*(X(1) - X(N)))...
+ NX((x(N)*2)*(x(1)"2) - 2*y(N)*y(1)*(x(1)"2) +
+ 2%y (N)"y (L)X (N)*X(1) - 2*(y(1)"2)*x(N)*x(1)
+ ()M (y(N)2) + (y(1)™4) + (x(1)M4) - 2y

Technical Repge@E-07-05

m_inv(x,y)

ariant of curve
different normalization
=(0,0,0)

x.y)

(x(1)*P10 + y(1)*P01);

YN - X(1) + Ny - YD)
@Y - XY )

).

) ..

2 + 27y(1)*y(N)) + 2X(1)*y(N)*(x(1) - X(N)) )...
"2 - 22%(21)*%(N)) + 2y (1) x(N)*(¥(N) - y(1)) )-..

2)y(N)*(x(N) - X(1)) + X(1)*y(1)*((y(N)"2) +
X(L)(X(N) - x(1)))...
YO (y(N) - y(1)))..

2%(y(1)"2)*(x(1)"2)...
- 2%(N)*(X(1)3)...
(N*(y(1)"3));
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function [Ix, ly, Ixx, Ixy, lyy] = krwl_curve_Eu_su

% krwl_curve_Eu_inv compute Euclidean summation inv

% like Eq. (2.12 - 2.16) in Wei-Yang's thesis, only
% Uses normalization equation: (x(1), y(1), x(N))
%

% [Ix, ly, Ixx, Ixy, lyy] = krwl_curve_Eu_sum_inv
% x:NXx1column vector

% vy :Nx1column vector

%

% ,where

% (x(1),y(1)) is initial point

% (X(N),y(N)) is end point

% P10 = sum_1"N x(t)

% PO1 =int_1"N y(t)

% P20 = sum_1"N x(t)"2

% P11 =int_1"N x(t)*y(t)

% P02 = sum_1"N y(t)"2

%

% Author:  K.R. Widder

% Time-stamp: 11/24/06

% E-mail:  widder@wisc.edu

N = size(x,1);

P10 = sum(x);

P01 = sum(y);

P20 = sum(x.*x);

P11 = sum(x.*y);

P02 = sum(y.*y);

D = (y(N) - y(1))*2 + (x(N) - x(1))"2;
Droot = sqrt(D);

%11 = NA2*(X(1)"2 + y(1)"2) + P10"2 + PO12 - 2*N*

ly = (1/Droot)*(P10*(x(1) - x(N)) + PO1*(y(1) - y(
IX = (1/Droot)*(PO1*(x(N) - x(1)) + P10*(y(1) - y(

Ixx = (1/D)*(2*PL0*((y(1) - y(N)*(Y(N)*x(1) - y(1)
+ 2*POL*(x(1) - x(N))*(y(L)*)(N) - y(N)*x(1
+ P0O2*((x(L) - x(N))*2) + P20*((y(1) - y(N
+ 2"P11*(x(N) - x(1))*(y(1) - Y(N))...
+ N(((Y(2)*%(N)) - (x(1)*y(N)) )*2) );

Ixy = (L/D)*( PLO*( y(1)*(x(N)*2 - y(N)"2 - x(1)"2
)on.

+ PO1*( x(1)*(y(1)"2 + x(1)*2 - y(N)*2 + x(N)

+ (P20 - PO2)*(x(1) - X(N))*(y(1) - y(N))...

+ PLI*( (Y(N) - y(1))"2 - (x(N) - X(1))"2 )..

+ N*(y(1)x(N)*(y(2)"2 - X(L)*%(N)) + (x(1)"
X(N)*x(1))...

- (Y(D)"2)*y(N)*(X(N) + x(1))) );

lyy = (I/D)*(2*P10*((x(N) - x(1))*((y(1)"2) - y(N)*
+ 2*PO1*((y(N) - y(1))*((x(1)"2) - X(N)*x(1) -
+P20*((x(N) - x(1))"2) + PO2*((y(N) - y(1))"2)
+ 2*P11X((y(1) - y(N))*(X(1) - X(N)))...

+ NX((x(N)*2)*(x(1)"2) - 2*y(N)*y(1)*(x(1)"2) +
+ 2%y (N)"y(L)*X(N)*X(1) - 2*(y(1)"2)*x(N)*x(1)
+ ()2 (y(N)2) + (y(1)™4) + (x(1)M4) - 2y
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m_inv_denom(x,y)
ariant of curve
different normalization
=(0,0,0)

_denom(x,y)

(X(1)*P10 + y(1)*PO1);
N)) + N*X(1)*(x(N) - x(1)) + N*y(1)*(y(N) - y(1)) )
N)) + N*( x(1)*y(N) - x(N)*y(1)) );

*X(N)))...

)--.

N2) ...

Y(U)2 + 2*y(1)y(N)) + 2*x(1)*y(N)*(x(1) - x(N))
72 - 2%(1)%(N)) + 2*y(1)x(N)*(Y(N) - y(1)) )...

2)y(N)*(x(N) - X(1)) + X(1)*y(1)*((y(N)"2) +

Y(1) - X(L)*(X(N) - x(1))))-..
YA)*Y(N) - y(1))))-..

2%(y(1)"2)*(x(1)"2)...
- 2%(N)*(X(1)3)...
(N*(y(1)*3);
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