

University of Wisconsin – Madison Technical Report ECE-07-05

 2 of 30 9/24/2007

FROM MOVING FRAMES TO SUMMATION INVARIANTS: PROCEDU RES, PROPERTIES
AND APPLICATION

Kerry R. Widder1, Wei-Yang Lin2, Nigel Boston1, Yu Hen Hu1

1University of Wisconsin-Madison, Dept. of Electrical and Computer Eng.,

1415 Engineering Drive, Madison, WI, 53706 USA
2National Chung Cheng University, Dept. of Computer Science and Information Engineering,

EA 310, 168 University Rd., Min-Hsiung, Chia-Yi, Taiwan

ABSTRACT

The method of moving frames, a powerful
mathematical tool for deriving geometrically
invariant functions, is described. A systematic
approach is outlined for the derivation of new
members of a family of geometrically invariant
features using the moving frame method. This
family of features is called summation invariant.
An example derivation is given to illustrate the
procedure. The current members of this family are
summarized and several implementation
considerations for these features are investigated.
A naming convention is given and a standard test
is defined for the purpose of comparing the
discrimination ability of these features. This test is
used to compare the features derived so far using
the application of face recognition and the Face
Recognition Grand Challenge (FRGC2.0) dataset.

1. INTRODUCTION

Invariant features are an important tool in the
pattern recognition toolbox. Objects to be
recognized in images usually are not guaranteed to
be in the same location, of the same orientation, of
the same size, nor even with the same shape.
Thus, having a descriptive feature that is invariant
to geometric transformations, like translation,
rotation, scale or shear, or that is invariant to all of
them, is highly desirable. Summation invariants

are one family of geometrically invariant features
that was developed recently [1-7].
 This paper will briefly review some other
existing invariant features and will summarize the
summation invariants developed thus far. Then, it
will describe the moving frame method and
present a systematic approach for deriving
summation invariants. Some implementation
issues will also be analyzed. A standard
experiment will be defined and used to evaluate
the discrimination performance of the summation
invariants derived so far.

2. INVARIANT FEATURES

2.1. Previous work

One of the early geometric invariant features is the
moment invariant [8]. This type of feature is
global in nature, using the whole image, and is
invariant to rotation, translation, and scale, and in
some cases even to illumination changes [9]. The
global nature limits the discrimination ability of
moment invariants, requiring the use of higher
order moments to improve this ability. The higher
order moments contain the detail information
about the image. The performance of this class of
invariant with occlusions is hindered by the global
nature of this feature. The higher order moments
are more susceptible to being affected by noise,
which limits their usefulness, and hence the
amount of detail which can be included. Moment
invariants have been applied to areas such as

University of Wisconsin – Madison Technical Report ECE-07-05

 3 of 30 9/24/2007

airplane recognition [10] and Chinese character
representation [11].
 Fourier descriptors utilize a set of Fourier
transform coefficients to represent a closed curve.
The normalization of these descriptors to a
transformation group results in them being
invariant to transformations within that group. The
similarity transform is usually used (rotation,
translation and scale), although the affine
transformation group has also been used [12]. The
global nature of the Fourier transform prevents the
extraction of localized feature information.
However, unlike moment invariants, the feature
space will be inherently large. The higher order
detail coefficients will tend to be more affected by
noise, so noise immunity can be tuned by
dropping some portion of the higher order
coefficients. These features have been applied to
airplane recognition [12].
 Wavelet based invariants offer better
localization than Fourier methods and offer
multiple resolution levels. Dyadic wavelet features
with invariance to affine transformations have
been developed [13]. Noise sensitivity is
adjustable by changing the number of resolution
levels used, i.e., dropping higher resolution
coefficients will improve the noise performance at
the expense of a loss of detail. Dyadic wavelet
invariants have been applied to airplane
recognition [13] and Gabor wavelet invariants
have been applied to face recognition [14].
 Differential invariant features have been
widely studied and applied. They are local in
nature, but the use of high order derivatives in
their calculation makes them sensitive to noise.
Methods to minimize the noise sensitivity have
been proposed, such as semi-differential
invariants [15] and numerical approximations
[16]. Differential invariants have a large feature
space, which improves discrimination
performance, and their local nature allows the
accommodation of occlusions. Differential
invariants have been applied to medical images
[16] and face recognition [17].

 Integral invariant features are global in
nature, but can be made ‘semi-local’ by changing
the limits on the integration [18]. This technique
will also increase the size of the feature space and
improve the discrimination ability of these
features, as well as allow for handling occlusions.
The integral invariant features are derived from
‘potentials’ involving integration, instead of
derivatives, giving them a decreased sensitivity to
noise [19]. Another advantage to this invariant is a
systematic method of deriving new features.
Integral invariants have been applied to natural
images (leaves) [18] and fish and hand shapes
[20].

 2.2. Summation invariant

Summation invariants share many of the features
of integral invariants, including being global in
nature, able to be made semi-local to increase the
feature space and handle occlusions, decreased
sensitivity to noise and a systematic method for
deriving new invariants. However, summation
invariants are defined with potentials that are
summations instead of integrals, so calculating
them will not involve numerical approximations.
Summation invariants have been applied to fish
shapes [1, 6] and face recognition [4-7].

3. SUMMATION INVARIANT

The idea of summation invariant is based on the
mathematical method of moving frames. The
notion of moving frames was first proposed by
Cartan [21], and later formalized into a systematic
method by Fels and Olver [22, 23]. To understand
and use this method, several concepts need to be
defined. In this section, brief definitions and a
synopsis of the method in its simplest form are
given, followed by extensions of the method using
jet spaces. Then, a systematic procedure is given
for deriving new families of summation
invariants, a naming convention is proposed and a
detailed example derivation is given.

University of Wisconsin – Madison Technical Report ECE-07-05

 4 of 30 9/24/2007

3.1. Cartan’s Method of Moving Frames

Cartan’s method of moving frames provides a
framework for deriving geometric invariants for a
specific transformation group. Given a manifold,
M, of dimension, m, and a Lie group, G, of
dimension, r, acting smoothly on M, invariant
functions ℜ→MI : meaning that I(g◦z) = I(z),
for all Gg ∈ and Mz∈ , are desired. Moving
frames provide a mechanism for systematically
deriving these invariant functions. Since moving
frames are intimately connected to a
transformation group, any invariants coming from
this method will only be invariant to
transformations within that group, or
transformation groups that are subsets of the
group the invariants were derived under. The
concepts discussed here will be illustrated using a
simple example consisting of a manifold, M =

2ℜ , and a transformation group, G = SO(2),
consisting of rotations of angle θ about the origin.

A parameterized curve in 2ℜ is a curve
where some other variable, or parameter, is used
to identify points on the curve. Examples of
parameters include arc-length, time and order
(sample number). A curve describing the motion
of an object, like y = f(x) = ax2, could be
parameterized by time, as y(t) = a(x(t))2. If
samples are taken of a continuous curve, then that
curve is parameterized by n, where 1 ≤ n ≤ N is
the sample number. If this curve is transformed
geometrically, the transformed curve can be
described by another set of points parameterized

by n, { [] []()nynx , ; 1 ≤ n ≤ N} such that [] []()nynx ,
is transformed from (x[n], y[n]) for each n. The
same idea can be extended to higher dimensions,
e.g., surfaces in 3ℜ .

A potential, Pi,j , of order k is defined as:

 [] []∑= nynxP ji
ji , , (3.1)

where k = i + j, and i, j ≥ 0. The average values of
the variables can be recovered from the first order

potentials (k = 1) by dividing by N, the number of
samples.
 Potentials are similar to moments, but
more general. For a discrete function, f(x), the
moment is defined by:
 ()∑= xfxm p

p (3.2)

which can be put in parameterized form as
follows:
 [] []∑=

n

p
p nynxm , (3.3)

where y = f(x). In this formulation, it is evident
that potential Pi,1 is the same as mi, or Pi,1 = mi.
Extending to the case of a surface, Pi,j,1 = mi,j.
These observations lead to the following lemma:

Lemma: A geometric moment is equal to a
potential with the last index equal to one. (Note:
the dimension of the moment is one less than the
potential.)

A parameterized 3D surface in 3ℜ can be
described by a set of points

{ [] [] [](), , ,x m n y m n z m n , 1 ≤ m ≤ M, 1 ≤ n ≤

N}. In this case, a potential, Qi,j,k , of order l is
defined as:

 [] [] []nmznmynmxQ k
M

m

N

n

ji
kji ,,,

1 1
,, ∑∑

= =

= ,

 (3.4)
where l = i + j + k, and i, j, k ≥ 0.
 A manifold, M, is an object for which
every local neighborhood looks like a subset of
Euclidean space. A 1D manifold is a smooth curve
with no self-intersection. An example of a 2D
manifold is a torus.
 An orbit, Oz, is the set of all
transformations of z under the action of the given
transformation group. In the example M = 2ℜ and
G being rotation around the origin, an orbit is the
set of all circles centered on the origin.
 A canonical set, K, is a subset of M such
that K intersects each orbit of z at exactly one
point, u. In the example given above, one possible
canonical set would be the x-axis from the origin

University of Wisconsin – Madison Technical Report ECE-07-05

 5 of 30 9/24/2007

to +∞, since each orbit (circle centered on the
origin) would intersect it at only one point.
 A free action is one where given points a
and b there is at most one transformation that
sends point a to point b. An example of action that
is not free is the situation with G = SE(2)
(rotations about the origin by angle θ and
translations by a and b in the x and y directions,
respectively) and M = 2ℜ . For a = (1,0) and b =
(0,1), two of the transformations that will take a to
b are (θ, a, b) = (π/2, 0, 0) and (θ, a, b) = (0, -1, 1),
thus the action is not free.

A transformation group, G, acting on a
manifold, M, is a group with smooth action that
satisfies

e◦z=z, g◦(h◦z)= (g◦h)◦z, (3.5)
for all Mz∈ , Gg ∈ , where e is an identity
element in the group. Examples include Euclidean
(rotation and translation) and affine (rotation,
translation, scaling and shear).
 Smooth action of a transformation group
means that the group operation is infinitely
differentiable. In the example, the group action of
rotation about the origin by angle θ takes a point

(x,y) to a point ()yx, , where ()yx, = ((x·cos θ -
y·sin θ), (x·sin θ + y·cos θ)), which is clearly
infinitely differentiable.
 A moving frame is loosely defined as a
function of z (where z is a point on the manifold
M) that produces the unique transformation,

Gg ∈ , that sends z into K. The existence of a
moving frame is dependent on the group action on
the manifold being free. It is called ‘moving’
since it is different for each point on the manifold.
More formally, it is a smooth map, ρ:M�G, such
that ρ(g◦z) =g◦ ρ(z) for all Gg ∈ and Mz∈ . In

the example, a moving frame for M = 2ℜ , and G
being rotation around the origin, is – θ, where θ is
the angle of the point z with respect to the x-axis,
and where K is the x-axis from the origin to +∞.
 If an invariant function I(z) is given, then
any function of I, f(I(z)), is also invariant for G
acting on M. The invariants, I1, …, Ik, are
fundamental invariants for G acting on M if three

conditions are satisfied: 1) they are indeed
invariant, 2) none of them are redundant, and 3)
every invariant can be expressed as a function of
them.
 The number of fundamental invariants that
can be derived using the moving frame method is
limited to k, where k = m-r, (m > r), with m the
dimension of M and r the dimension of G. Once
the moving frame is derived, it can be applied to
the remaining k dimensions of M not fixed in the
canonical form to give k invariant functions.
 To see how this works, let z = (z1, …, zm)
be a point on the manifold M, and let w(g, z) =
(w1(g, z), …, wm(g, z)) be the explicit formulas for

the group transformation of z (i.e., ()zgwz ,11 =).
Then the canonical set, K, will fix r coordinates of
M, i.e., K = {z1 = c1, …, zr = cr}, where the ci’s are
constants. The moving frame is found by solving

w1 = c1, …, wr = cr (3.6)
for the transformation group parameters. This set
of group parameters is the moving frame since it
will transform any point z in M to K. The set of
equations (3.6) is called the normalization
equations.
 The invariant functions are derived by
taking the moving frame and applying it to the
remaining explicit formulas not fixed by K, i.e.,
wr+1, …, wm. More formally, the invariant
functions are given by

I1(z) = wr+1(ρ(z), z),
…,
Ik(z) = wr+1(ρ(z), z) (3.7)

and are invariant for any Gg ∈ .
 To see that these functions are invariant,
consider two points in M, z and z′, related by a
transformation Gh∈ , i.e., z′ = h◦z. These points
are by definition in the same orbit. A moving
frame ρ(z), derived using (3.6), will take z and z′
and transform them to u and u′, where u and u′ are
in K, and u = (c1,…,cr,wr+1(ρ(z), z),…, wm(ρ(z), z))
and u′ = (c1,…,cr,wr+1(ρ(z′), z′),…, wm(ρ(z′), z′)).
Since z and z′ are in the same orbit, and K by
definition intersects each orbit in only point, then
u = u′ and hence wr+1(ρ(z), z) = wr+1(ρ(z′), z′), etc.,

University of Wisconsin – Madison Technical Report ECE-07-05

 6 of 30 9/24/2007

and I1,…,Ik are invariant to all transformations in
G.

Applying this procedure to the simple
example used in this section, where M = 2ℜ , and
G = SO(2) (rotations of angle θ about the origin),
m = 2, r = 1 and k = 1. Thus, one invariant can be
derived. Let { }0,0| ≥== xyxK , the set of all
points on the positive x-axis plus the origin. The
wi’s are given by
 θθ sincos1 ⋅−⋅= yxw

 θθ cossin2 ⋅+⋅= yxw (3.8)
and the normalization equation is

0cossin2 =⋅+⋅= θθ yxw (3.9)
where only one wi is made constant since r = 1.

Solving for θ gives the moving frame,
which is

 ()

−== −

x

y
z 1tanθρ (3.10)

The invariant is found by applying the moving
frame to w1, the wi not used in the normalization
equations, giving

 ()() 22
11 ,,)(yxyxzwzI +== ρ (3.11)

which is the distance of z from the origin.
Intuitively this makes sense, since as a point is
rotated about the origin, its distance from the
origin will remain constant.

3.2 Extensions using Jet Space

The number of fundamental invariants that can be
derived using this method is k, where k = m – r, m
is the dimension of the manifold and r is the
dimension of the group action. In the example of
the previous section, with m = 2 and r = 1, then k
= 2 – 1 = 1. If m < r, then the action is not free
and it is necessary to replace the manifold, M, by a
larger-dimensional manifold, namely jet space,
before the moving frame method can be applied.
This expansion can be as large as needed – the
more dimensions added, the greater the number of
invariant functions that can be generated. In the
previous section, the example was a case where
the group action was free, hence the moving frame
existed and an invariant could be found. In

general, this will not be the case, since usually the
group action will have a higher dimension than
the manifold.
 Consider a new example, where M = 2ℜ
and G = SE(2) (rotations about the origin by angle
θ and translations by a and b in the x and y
directions, respectively). The group action in this
example will map a point z = (x, y) into a

transformed point ()yxz ,= , where

 ayxx +⋅−⋅= θθ sincos

 byxy +⋅+⋅= θθ cossin (3.12)
In this example, m = 2, r = 3 and k = -1 and the
group action is not free. This means a moving
frame does not exist and the moving frame
method cannot be used to find invariants. To
overcome this limitation, a manifold must be
found with dimension greater than the group
action. This is accomplished by generating a jet
space with sufficient dimension and using it for
deriving the invariants.

Traditionally, a jet space, Jn, is a Euclidean
space with additional coordinates corresponding
to the derivatives of the dependent variables, up to
the nth order:
 (x, u(n)) , (3.13)
where x represents all the independent variables
and u(n) represents all of the dependent variables
and all partial derivatives up to the nth order. This
mechanism is used to formally handle derivatives
when dealing with the action of transformation
groups. The additional coordinates provide a
richer description. They also expand the
dimensions of the space that applies to the
particular problem being addressed, allowing
more invariants to be generated. Applying the
group action to jet space is called prolonging it
into jet space.
 The new example used in this section, with

1−=k , will require two derivative terms in the jet
space to achieve 1=k and thus to allow
generating one invariant. This jet space is given by

() ()xxx yyyxJ ,,,2 = , (3.14)

where yx denotes the first derivative of y with
respect to x and yxx denotes the second derivative

University of Wisconsin – Madison Technical Report ECE-07-05

 7 of 30 9/24/2007

of y with respect to x. After prolonging the group
action into this jet space, the resulting transformed
coordinates for a parameterized curve, z(t) = (x(t),
y(t)) are given by (3.12) and

θθ
θθ

sincos

cossin

tt

tt
x yx

yx

xd

dt

dt

yd
y

−
+

==

()3sincos θθ tt

tttttt
xx

yx

yxyx

xd

yd

xd

d
y

−
+

== (3.15)

These four formulas are the wi’s for this example.
Adding more terms to the jet space would allow
the generation of more invariants.
 To derive the moving frame for this
example, a canonical set, K must be defined and
the normalization equations arising from K solved
for the parameters of the moving frame. A suitable
K is

 01 == xw , 02 == yw , 03 == tyw

 (3.16)
Solving for θ, a and b yields the moving frame

= −

t

t

x

y1tanθ

22
tt

tt

yx

yyxx
a

+

+
= ,

22
tt

tt

yx

yxxy
b

+

+
= (3.17)

Substitution of this moving frame into the formula

for xxy (3.15) gives the invariant

 () κ=
+

+
=

2/322
)(

tt

tttttt

yx

yxyx
zI (3.18)

which is the curvature.
 The derivative jet space provides the
needed dimensionality for applying the moving
frame method and generating invariants.
However, the reliance on higher order derivatives
makes the resulting invariants sensitive to noise.
A different approach that addresses this noise
sensitivity uses potentials, which are based on
integrals instead of derivatives, to define the jet
space. This eliminates the high order derivatives
and hence the noise sensitivity problem.
 The integral potential jet space, Jp

n, is
defined as a Euclidean space with coordinates
 (x, y, x0, y0, V(n)) , (3.19)

where (x0, y0) is the initial conditions and V(n) is a
set of potentials, defined as a potential Vi,j of order
k, where
 jiji

x yxV =, (3.20)

with j ≠ 0 and k = i + j. Thus, for z = V0,1, the
potential is

 ∫=
x

x
ydxz

0

 (3.21)

 (see [19] for details). The method of moving
frames can also be applied to this type of jet space
to derive geometric invariants.

Another approach, summation invariants,
utilizes the moving frame method with a jet space,
Jn, defined as a Euclidean space with coordinates
 (x[1], y[1], x[N], y[N], P (n)) , (3.22)
for the case of a curve, where P(n) is all potentials
up to and including the nth order and x[k], y[k] are
points on the curve parameterized by k, and 1 ≤ k
≤ N. For a parameterized 3D surface in 3ℜ , the
corresponding jet space is given by:

[] [] [] [] [],1,,1,,1,1,1,1,1,1(MyMxzyxJ n =

 [] [] [] [] ()),,1,,1,,1,1, nQNzNyNxMz
 (3.23)
where Q(n) is all potentials up to and including the
nth order. This jet space definition based on
summations also avoids high order derivatives and
noise sensitivity. Its advantage over the integral-
based potentials is that it deals directly with
discrete data, whereas for the integral approach,
the discrete (sampled) data is an approximation to
the actual data (continuous) and the accuracy will
be dependent on the sampling rate.

3.3 A systematic procedure for deriving
summation invariants based on Cartan’s
Method of Moving Frames

To find summation invariants under a
transformation group, G, it is necessary to find an
appropriate canonical set, which leads directly to a
set of normalization equations. Solving these
equations for the transformation variables gives a
moving frame. Invariant functions are found by

University of Wisconsin – Madison Technical Report ECE-07-05

 8 of 30 9/24/2007

applying this moving frame to the higher order
potentials not used in deriving the moving frame.

A procedure for deriving new families of
summation invariants is outlined below and a
detailed example derivation using this procedure
is given in the next section:

1. Define the kind of transformation group

(e.g., Euclidean, affine, etc.) and mode
(e.g., 2D, 3D).

2. Determine the equations for the

transformed variables and potentials.

3. Define the canonical set.

4. Define the normalization equation from

the canonical set.

5. Find the moving frame from the

normalization equation. (Solve the set of
equations defined by the normalization
equation to get the transformation
variables. May need to use a math solver
program, like Maple®.)

6. Apply the moving frame to higher order

potentials to get the invariants. (i.e.,
potentials that were not part of the
normalization equation.)

7. Verify that they are actually invariant.

Since the theory guarantees invariance,
this step is a sanity check to make sure
no errors were made in the derivation
process.

(Note: It may be necessary to try a different
normalization equation if the one selected is
not solvable or is too complicated to be
practical.)

 The naming convention used in most of
the previous works [1-7] can be modified
slightly to include more information about the

invariants. This modified convention is
formalized below:

 E

1,1η , where

1. The variable name indicates mode (e.g.,
η=2D, κ=3D).

2. The superscript indicates transformation
group (e.g., E=Euclidean, A=affine,
S=similarity, P=projective, Pp=planar-
projective).

3. The subscripts indicate the potential it
was derived from (e.g., ‘1,1’=P1,1,
‘2,0’=P2,0).

4. The normalization equation used in the
derivation will need to be stated
elsewhere, as it would be too
cumbersome to include in the naming
convention.

3.4. Example derivation

An example of deriving a new family of
summation invariants using the procedure given
above follows. The mode used is 2D, the
transformation group selected is Euclidean and the
normalization equation is (x[1], y[1], x[N]) = (0,
0, 0,).
 The original work for the 2D Euclidean
transformation group only used the numerator of
the resulting formulas in the experimentation and
for reporting the formulas, since the numerator
and denominator were shown to be relatively
invariant. A relative invariant is invariant to the
group transformation up to a factor that is a
function only of the transformation parameters,
not the object points, i.e., I(g◦u) = f(g)I(u). When
classification is performed using a measure such
as normalized cross-correlation, the factors will
cancel. This practice will be used here as well.

Euclidean transformation (2D):

() ()
() ()

+

 −
=

b

a

y

x

y

x

θθ
θθ

cossin

sincos (3.24)

University of Wisconsin – Madison Technical Report ECE-07-05

 9 of 30 9/24/2007

Transformed potentials:

[]∑
=

=
N

n

nxP
1

0,1 , []∑
=

=
N

n

nyP
1

1,0 (3.25)

Apply Euclidean transformation:

[]∑
=

=
N

n

nxP
1

0,1 [] () [] ()()∑
=

+⋅−⋅=
N

n

anynx
1

sincos θθ

() ()1,0 0,1cos sinP P aNθ θ= ⋅ − ⋅ + (3.26)

[]∑
=

=
N

n

nyP
1

1,0 [] () [] ()()∑
=

+⋅+⋅=
N

n

bnynx
1

cossin θθ

() ()1,0 0,1sin cosP P bNθ θ= ⋅ + ⋅ + (3.27)

Similarly, for []∑
=

=
N

n

nxP
1

2
0,2 , [] []∑

=
=

N

n

nynxP
1

1,1 ,

and []∑
=

=
N

n

nyP
1

2
2,0 , after transformation:

[] [] [][]
2

11

2
0,2 sincos∑∑

==

+⋅−⋅==
N

n

N

n

anynxnxP θθ

θθθθ cossin2sincos 1,1
2

2,0
2

0,2 ⋅⋅⋅−⋅+⋅= PPP

 2
1,00,1 sin2cos2 aNaPaP ⋅+⋅⋅⋅−⋅⋅⋅+ θθ

 (3.28)

[] [] [] []

[] []

1,1

1 1

cos sin

sin cos

N N

n n

P x n y n x n y n a

x n y n b

θ θ

θ θ
= =

 = = ⋅ − ⋅ +

 ⋅ ⋅ + ⋅ +

∑ ∑

() ()()
()
()

2 2
1,1 2,0 0,2

1,0

0,1

cos sin sin cos

cos sin

cos sin

P P P

P b a

P a b N a b

θ θ θ θ

θ θ
θ θ

= − + − ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ ⋅
 (3.29)

[] [] []
2

2
0,2

1 1

2 2
0,2 2,0 1,1

2
1,0 0,1

sin cos

cos sin 2 sin cos

2 sin 2 cos

N N

n n

P y n x n y n b

P P P

P b P b N b

θ θ

θ θ θ θ

θ θ

= =

 = = ⋅ + ⋅ +

= ⋅ + ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅

∑ ∑

 (3.30)
Canonical Set/Normalization equation:

[] [] []() ()1 , 1 , 0 , 0 , 0x y x N = (3.31)

(Note: instead of []nx , could have used []ny ,

0,1P , 1,0P , etc.) Then solve for the moving frame
{ θ, a, b} based on the normalization equation (use
Maple, Mathematica® or similar)(See results in
Appendix B)

Apply the moving frame (i.e., values of θ,
a, b obtained above) to potentials not used in the
normalization equation to get summation
invariants using Maple, Mathematica or similar
symbolic mathematical packages.
 Verify the invariance of the derived
formulas by applying them to curves that have
been subjected to the transformation, e.g., define a
curve and several Euclidean transformations of it
and compute the new summation invariant for
each transformed curve – they should all be the
same. (Use Matlab®, or similar.)

The Matlab code to implement this
verification is shown in Appendix C. It first
computes the values for the original curve with
the denominator term, then computes them for ten
random transformations (0≤θ≤2π, 0≤a,b≤100)
without the denominator term. (Note: the original
work left out the denominator term, so the
experimentation was done without it for the new
invariants to get an equal comparison.) The results
of this test for two random transformations are
shown below, where Hx corresponds to η1,0, Hy
corresponds to η0,1, etc.:

University of Wisconsin – Madison Technical Report ECE-07-05

 10 of 30 9/24/2007

run ck_krw1_curve_Eu_sum_inv
% krw1_curve_Eu_sum_inv_denom
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35,
0.65619, 3.0666, 23.7209)
% krw1_curve_Eu_sum_inv
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35,
0.65619, 3.0666, 23.7209)
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35,
0.65619, 3.0666, 23.7209)

The data confirms that the new summation
invariants are indeed invariant to Euclidean
transformations. Also, the denominator term had
no effect on the values of the summation
invariants.

A list of the summation invariants derived
thus far is given in table 1, along with where each
has been published. Detailed formulas for each are
listed in Appendix A. Each invariant family is
specified by mode, transformation group and
normalization equation.

4. IMPLEMENTATION CONSIDERATIONS

In applications to pattern classification, an
invariant feature is computed from a given object
(curve or surface) which may be subject to
geometric transformations such as translation, or
rotation. Being an invariant feature, its value
should remain the same before and after the rigid
object is subject to the geometric transformation.
As such, one may evaluate the invariant feature
based on the transformed coordinates

[] []()x n y n without knowing the parameters,

e.g. θ, a, or b, nor the original coordinates (x[n]
y[n]).

In practice, there may be factors which
adversely affect the invariance of such a feature.
This section examines several such factors and
their affects. The factors examined here include
correspondence, spatial quantization after
geometric transformation, occlusion, finite
precision arithmetic and geometric scaling. Other
implementation considerations that contribute to
the effectiveness of the invariants for object

Table 1. List of Summation Invariants derived so far.

Mode Transform Normalization Equation Invariants Derived1,2,3 Published Data set
2D Euclidean (x1,y1,yN) = (0,0,0) EEEEE

0,10,10,10,10,1 ,,,, ηηηηη 1) [3]
2) [4]
3) [5]
4) [6]
5) [7]

1) FRGC 1.0
2) FRGC 1.0
3) FRGC 1.0
4) FRGC 1.0/2.0
5) FRGC 2.0

2D Affine (x1, y1, xN, yN, P10, P01) =
(0, 0, 1, 1, 0, 0)

A
0,2η

1) [1]
2) [6]

SQUID

2D Euclidean (x1,y1,xN) = (0,0,0) EEEEE
0,10,10,10,10,1 ,,,, ηηηηη FRGC 2.0

3D Euclidean (x11, y11, z11, yM1, zM1,
z1N,) = (0,0,0,0,0,0)

EEE
0,0,10,1,01,0,0 ,, κκκ

1) [3]
2) [5]
3) [6]

FRGC 1.0

 EEE
1,1,01,0,10,1,1 ,, κκκ FRGC 2.

3D Affine (x11, y11, z11, xM1, yM1,
zM1, x1N, y1N, z1N, P100,
P010, P001) = (0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0)

A
0,0,2κ

1) [2]

2) [6]

1) 3D cafe face

1. The variable name indicates mode (e.g., η=2D, κ=3D).
2. The superscript indicates transform group (e.g., E=Euclidean, A=affine, S=similarity, P=projective).
3. The subscripts indicate the potential it was derived from (e.g., ‘1,1’=P1,1, ‘2,0’=P2,0).

University of Wisconsin – Madison Technical Report ECE-07-05

 11 of 30 9/24/2007

recognition will also be examined, including
feature dimensionality, non-rigid geometric
transformations and fusion of results from
multiple regions.

4.1. Correspondence of Data Points, Spatial
Quantization, Occlusion, Finite Precision
Arithmetic and Geometric Scaling

One issue that is prevalent in object recognition is
that of correspondence, making sure that the same
things are being compared. This issue is also
important in the application of summation
invariants. In [4, 5] optimizing the alignment of
the region used for face recognition resulted in
improved performance. This optimization was
implemented by taking the mean of the
summation invariant images computed from the
training images and using the sum of squared
differences (SSD) measure to find the closest
match for each new image compared to the mean
training image. When applying summation
invariants, better results are obtained if measures
are taken to insure good correspondence between
objects.

In practical applications, the geometric
transformation of an object in an image is not the
result of a manipulation of the original data points,
but from a manipulation of the object or the
camera, resulting in a new image of the
transformed object. In general, this results in a
different set of sampled data points than those
obtained by just transforming the original data set
due to the quantization effects of the camera. The
new image of the transformed object will contain
points sampled from slightly different locations on
the object than in the original image. This spatial
quantization after geometric transformation may
result in not only the data points being different,
but also a different number of data points for a
given region. Both of these changes will adversely
affect the invariance of the summation invariant.
One way to alleviate this problem is to re-sample
the transformed curve or surface in the parameter
space rather than the spatial coordinates. One

example of this is re-sampling a curve with points
located at equal arc-length points along the curve.
This issue will be examined more fully in the next
section.

Occlusion of all or portions of an object in
an image can occur in several ways. Sometimes a
3D surface is imaged digitally using a range image
map, which corresponds to a projection of the
surface in a particular direction. When the object
undergoes a geometric transformation (e.g.,
rotation), the image of the transformed object may
have portions of the object that were visible in the
original image now occluded by other parts of the
object. Extensive translation may also render
some, or all, of the transformed object outside the
viewing window. Both of these situations may
lead to inaccurate values of invariant features, or
even render the calculation impossible. To address
this concern, the ranges of allowable geometric
transformation have to be restricted to prevent this
from occurring, or measures such as using semi-
local features (to be discussed in the next sub-
section) need to be used. This situation also
requires that the correspondence of the data points
for invariant feature calculation must be
accurately established.

Another factor that may affect invariance
is numerical issues due to finite precision
arithmetic, such as rounding errors. The original
works on summation invariants applied to face
recognition [4-7] utilized double precision
floating-point numbers in the calculations. As
long as there is no division operation, the
numerical rounding error accumulation should be
of little concern.

Geometric scaling will also affect the
values of summation invariants. This factor arises
from images taken at different distances from the
object or from images taken at different
resolutions. Either case will result in sample
points at different locations and a different density
of sample points. The summation invariant will
produce different values under these conditions
for the same object. To reduce this affect, re-
sampling of the object images can be done to give

University of Wisconsin – Madison Technical Report ECE-07-05

 12 of 30 9/24/2007

all instances of the object the same density of data
points. The wide range of possible variations
makes it difficult to quantify this affect in general.

Another issue that may arise involves the
scaling of the images. The summation invariants
derived under Euclidean transformations are not
invariant to scaling, so if the images to be
compared are of different scales, or if the original
scale information is lost, then it will be necessary
to normalize the images to the proper scale to get
the best results [4, 5]. This may require re-
sampling.

4.2. Feature Dimension, Non-Rigid Geometric
Transformations and Fusion

The original definition of summation invariants
produces a single value for an image/object. The
extension to ‘semi-local’ summation invariants [1]
increased the size of the feature space to provide
better discrimination capabilities. However, this
requires specifying a window size for the local
computation. Optimizing this window size will
further improve performance. This technique is
also useful for dealing with occlusions, since it
makes the feature more local in nature and allows
comparisons of partial objects (assuming the
correspondence is known).

Another factor is non-rigid geometric
transformations, which are caused by
deformations of the object being imaged. One
example of this factor is the variation caused by
changes in expression on human faces. These
transformations will obviously affect the
invariance of any summation invariant derived
under transformation groups, such as Euclidean,
that don’t include non-rigid transformations.
Invariants derived under affine or projective
groups would be expected to have a better chance
of retaining their invariance.

One way to alleviate this problem is to
compute invariant features on a local or semi-local
basis over a smaller region of the entire object.

The intuition is that the non-rigidness effect will
be less prominent over a small region of a large
object. As such, the rigid transformation
assumption would be more likely applicable in
such a situation. On the other hand, to compute
summation invariant over smaller regions would
require better correspondence between the original
and transformed data points. In face recognition
applications, improvement was achieved by
carefully selecting sub-regions that were more
invariant to expression changes, like the nose
region [4, 5]. The invariants were then computed
on the sub-region(s) instead of on the whole
image.

Finally, using either multiple sub-regions
or multiple invariants and some method of fusion
to obtain the final result was shown useful in
improving the performance of the summation
invariants [5, 7] in face recognition.

5. SIMULATIONS

The issue of spatial quantization after geometric
transformation will be examined more closely
here with simulations to illustrate the issues
involved. An example curve is shown in figure 1
along with the curve resulting from a 36˚ rotation
and translation of the original curve (o’s). The
curve labeled ‘camera quantization’ (x’s) is
produced by re-sampling the transformed curve on
the same grid spacing that the original curve had,
simulating the image of the rotated curve obtained
by a camera.

This ‘camera’ is a 1D camera that
produces an image that is a line, where the x-value
is the position along the line and the y-value is the
distance of the object from the camera at that x-
value. The camera samples the object at regular
intervals, producing a quantization of the object
curve. When the object rotates, it is readily
apparent that the image of the object changes in
several ways. First, the rotated image is longer in
this example than the original. This affect is
caused by the projection of the object onto the x-

University of Wisconsin – Madison Technical Report ECE-07-05

 13 of 30 9/24/2007

axis (the camera image ‘plane’) being a different
size. This gives the quantized curve more data
points, 14 instead of 11, than the original. This
difference will increase the error in the values of
summation invariants for this curve. Although it is
likely that the transformed image will have a
different number of points, it is not guaranteed to
be the case in general.

Another difference in the rotated image is
that the points on the curve where the image
samples are located changes. The increase in
number of points obviously means that the points
are from different locations on the object, but even
if the total number of points was the same after
transformation, the points could still come from
slightly different locations. For example, on the
right half of the original curve, the camera sees a
relatively steep slope on the object, resulting in
relatively few points for that portion, while the left
part has a gentler slope, resulting in relatively
more points. After transformation, the situation is
reversed – the right part now has a gentler slope
and hence relatively more points while the left
part has a steeper slope, with fewer points than

before. While this example has more total points,
it is possible to have a case like this that would
have the same number of points.

This effect of a change in slope of the
curve after transformation on the location of the
sample points in the image of the curve is clearly
seen on the left-most portion of the curve. The
first camera point is located between the first and
second transformed points and the next camera
point is between the third and fourth transformed
points. These changes in location of the data
points on the curve will change the calculated
values of the summation invariants.

Finally, after transformation and
quantization, the end points may not be the exact
same points due to the actual end points lying
between the points of the quantization interval.
This can be seen on the left side of the
transformed curve where the two end points
(original transformed and camera quantized) are
different because the transformed end point falls
between the quantization interval points.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

original

orig. transformed
camera quantization

Figure 1 – Quantization effect after transformation.

University of Wisconsin – Madison Technical Report ECE-07-05

 14 of 30 9/24/2007

One technique that will reduce the error

caused by these quantization effects is arc-length
re-sampling. This is a parameterization of the
curve by arc-length and then re-sampling in the
parameterized domain. The original curve is re-
sampled at points that are equidistant along the
curve. When a new image (of the object
transformed) is obtained, it is also re-sampled at
equidistant points along the curve, using the same
number of samples as the arc-length re-sampled
original. This technique is illustrated in figure 2
using the same curves as in figure 1. The original
curve is indicated by the piecewise linear curve
and the equal arc-length re-sampled points are
shown as x’s. The transformed, quantized points
are indicated by a piecewise linear curve and the
original points transformed, quantized and equal
arc-length re-sampled are shown by o’s, while the

original arc-length re-sampled points after
transformation are shown as x’s. The data points
using this method are clearly more accurate than
the results without it in figure 1. This method
will cancel the effects noted above where the
number of sample points from a given portion of
the curve varies with transformation. The error
can be reduced, but not eliminated by this
technique since the end points may be at slightly
different locations on the curve, which will affect
all of the other re-sampled values. This is the case
in the example of figure 2.

The example curve of figure 1 was
transformed over rotation values ranging between
zero and 36˚ (with 51 samples instead of 11 for
improved performance). At each angle of rotation,
the Euclidean summation invariants derived here
were calculated for the transformed curve with
camera quantization and the transformed, camera

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

original

orig + arc-len

orig transformed + quantized
orig transformed + quantized + arc-len

orig + arc-len + transformed

Figure 2 – Arc-length re-sampling and quantization effect after transformation.

University of Wisconsin – Madison Technical Report ECE-07-05

 15 of 30 9/24/2007

quantized with arc-length re-sampling curve.
These values were compared to the Euclidean
summation invariants calculated on the original
curve points and to the original curve points after
arc-length re-sampling, respectively. As expected,
the two curves displayed errors in the calculations.
The errors are shown in table 2. The camera re-
sampled curve had the worst errors, with values
ranging as high as 76%. The arc-length re-
sampled curve had better results, with values
ranging only as high as 27% and with two of the
invariants (η0,1 and η0,2) having errors over the
given rotation range of magnitude less than 3%
and 6%. The arc-length re-sample technique
provides better results than using the raw camera
image. In addition, within a family of summation
invariants, some features show less susceptibility
to the quantization effects.

6. PERFORMANCE COMPARISONS

Invariance does not guarantee distinctiveness, so
the discrimination ability of summation invariants
must be evaluated experimentally. The previous
works did not use a consistent set of experiments,
so a fair comparison of the discrimination
performance of the summation invariants cannot
be made using the previously published results. A

proposal for a standard experiment to use for
comparison purposes is given here.

6.1. Standard experiment

The application used to make this assessment
is face recognition. The original work on
summation invariants utilized the Face
Recognition Grand Challenge (FRGC) database
[24]. Most of the early work used version 1.0.
Version 2.0 is more extensive in size and includes
variation in expression, and is used in the standard
experiment.

The FRGC was designed to provide the
incentive and means to achieve a significant
advance in the state-of-the-art in face recognition
[24]. It consists of an extensive database of 50,000
face images, a set of six challenge experiments
and a standardized experimental against the False
Acceptance Rate (FAR). The standard comparison
value is the TAR at a FAR of 0.001 (0.1%).

The experiment consists roughly of the
following steps: The raw images are normalized to
get them in a consistent pose and size, and are
cropped to a roughly elliptical shape (see figure 3,
also figure 4 where the image is rotated to more
easily see the features). The comparison algorithm
is then executed which calculates the features for

Table 2 – Quantization errors after transformation – with and without arc-length re-sampling.

Original, then camera quantization - error (%) (camera quant. Vs. original)
Theta, degrees 3.6 7.2 10.8 14.4 18 21.6 25.2 28.8 32.4 36 Max Min
Hx -6.61 2.22 12.48 6.42 13.45 7.40 17.59 6.78 23.49 12.71 23.49 2.22
Hy 1.71 13.86 27.27 31.80 39.58 45.64 55.68 55.25 68.08 68.85 68.85 13.86
Hxx -14.60 -3.32 10.97 -2.42 7.19 -5.50 9.72 -9.57 17.33 -2.28 17.33 -9.57
Hxy -7.26 6.14 22.35 17.48 27.27 23.45 38.68 25.83 50.83 38.59 50.83 6.14
Hyy -2.72 12.23 29.83 33.15 41.45 48.36 61.31 57.68 75.99 75.31 75.99 12.23

Original , transform, then Camera quantized and arc-length resample vs. original and arc-length - error (%)
Theta, degrees 3.6 7.2 10.8 14.4 18 21.6 25.2 28.8 32.4 36 Max Min
Hx -8.16 -5.16 -1.27 -7.79 -5.21 -11.26 -6.25 -14.39 -4.68 -12.47 -1.27 -14.39
Hy -4.54 -2.72 -0.43 -1.12 -1.79 -0.76 -0.22 -1.47 -0.23 -0.18 -0.18 -2.72
Hxx -15.86 -10.19 -2.56 -15.21 -10.30 -21.58 -12.31 -27.10 -9.28 -23.74 -2.56 -27.10
Hxy -11.96 -7.51 -1.65 -8.69 -6.74 -11.79 -6.40 -15.42 -4.84 -12.49 -1.65 -15.42
Hyy -9.59 -5.86 -1.00 -3.28 -4.13 -3.13 -1.36 -4.91 -1.13 -2.24 -1.00 -5.86

University of Wisconsin – Madison Technical Report ECE-07-05

 16 of 30 9/24/2007

each of the normalized face images. The training
set is used to train the classifier, which is then
used to make a decision on each face in the
validation set. This comparison is done for each
image against all others, yielding a 4007x4007
similarity matrix containing values for the relative
similarity of each face with each of the others.

The experimental framework used in the
FRGC is the Biometric Experimentation
Environment (BEE). It uses various scripts and
programs (Java, XML, Perl, C) to define and run
the experiments. The FRGC specifies a baseline
implementation for each experiment that
researchers can modify to implement their own
methods. The baseline uses Principal Component
Analysis (PCA) to derive the features for

comparison between images. The experimental
framework and well-defined experiments provide
a mechanism for easy and fair comparison of
results from different researchers. The size of the
database facilitates obtaining statistically
meaningful results.

The experiment used here is experiment 3s,
which uses 3D shape images. This portion of the
database contains 943 training images and 4007
validation images. The images were taken over the
course of two academic years. The 3D images
were taken under controlled lighting conditions
with a Minolta Vivid 900/910 series sensor. The
resulting images are 640x480 pixel range images.
The variation due to illumination is eliminated for
this type of image, but variation due to pose is still

Figure 3 – Normalized face range Figure 4 – Normalized face range image
 image. rotated.

Figure 5 – Raw face range image from Figure 6 – Region 5 from [7].

FRGC2.0 database.

University of Wisconsin – Madison Technical Report ECE-07-05

 17 of 30 9/24/2007

an issue. A sample of one of the images is shown
in figure 5 below (re-sampled on an equal grid and
rotated for better visualization).

Results for the experiments are reported via
Receiver Operating Curve (ROC) graphs. There
are three categories, I, II and III, corresponding to
images taken in the same semester, within the
same academic year, and within eighteen months
of each other, respectively. These graphs plot the
verification rate, or True Acceptance Rate (TAR),
others. This data is used to generate the ROC
graphs. A set of similarity mask matrices
determines which values in the similarity matrix
are valid for each ROC graph (I, II, III).

The set of experiments run in this project
utilize a sub-region of each face (region 5 as
defined in [7]) that is 81x81 pixels (see figure 6).
This sub-region was selected to reduce the degree
of variation due to expression. The goal in this
standard experiment is not to get the highest
performance possible, but rather to make a relative
comparison amongst the invariants. Therefore,
additional techniques to get higher performance
(like fusion of results from multiple regions) are
not attempted in the standard experiment.

Taken at face value, the summation invariant
will produce a single value for each face image.
This would be great for invariance, but poor for
discrimination purposes. To enhance the
discrimination capability, an extension to the
summation invariant concept was developed,
making it ‘semi-local’ [1]. This extension consists
of calculating the summation invariant at each
pixel over a window centered at that pixel. This
results in an expansion of the feature space and an
improvement in the discrimination capability of
the summation invariant.

The images are 3D surfaces, but some of the
invariant features are defined for 2D data. This is
handled by calculating the 2D feature over a
horizontal 1xN sized window centered on the
current pixel, then over a vertical Nx1 sized
window centered on the current pixel. An
additional processing step is the uniform re-
sampling with respect to arc-length in the

calculations done at each pixel. The window size
used is 21. For 3D summation invariants, the
window size is 17 and no arc-length re-sampling
is performed.

To minimize the computation burden of the
similarity calculation, principal component
analysis (PCA) is performed on the resulting
feature space to reduce its size. The basis vectors
for the PCA step are calculated from the training
set of images. The similarity metric used is the
Mahalanobis cosine.

The calculation of the summation invariant
features takes place in a C routine in the file
‘uwCommonInvariants.c’ that is part of the BEE
setup. Implementing the new family of invariants
requires modifying that file to include the new
calculations as additional functions and then
modifying the call to the invariant calculation
function for each run so the appropriate invariant
is used.

Comparison of the results is done using the
TAR value at a FAR of 0.001 for ROC-III. A
broader comparison can also be done using the
full ROC graphs for ROC-III, or using ROC-II or
ROC-I.

6.2. Results

The summation invariants derived so far (listed in
table 1) were each used as the feature for the
experiment outlined above. The results from those
experiments are summarized in Table 3 below.
The results shown are for ROC-III. The ROC
graphs for each set are shown in figures 7 - 11.

The results for the new family of invariants
derived here are very similar to those for the
original (e.g., the values for η1,1 match, the
original, η1,0 matches the new η0,1, etc.). The only
one that doesn’t follow the pattern is the new η0,2 ,
which is much lower than expected. The results
for the 2D affine η0,2 are similar.

The results for 3D Euclidean are worse than
those for the 2D invariants. One factor that could
account for this is the fact that the 2D invariant
calculation results in two values for each point

University of Wisconsin – Madison Technical Report ECE-07-05

 18 of 30 9/24/2007

10
-3

10
-2

10
-1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
er

ifi
ca

tio
n

R
at

e

eta10

eta01

eta20

eta11

eta02

10
-3

10
-2

10
-1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate
V

er
ifi

ca
tio

n
R

at
e

eta10

eta01

eta20

eta11

eta02

Figure 7 – ROC III graph for 2D Euclidean Figure 8 – ROC III graph for 2D Euclidean
summation invariants with y(N) = 0. summation invariants with x(N) = 0.

10
-3

10
-2

10
-1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
er

ifi
ca

tio
n

R
at

e

eta20

10

-3
10

-2
10

-1
10

0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
er

ifi
ca

tio
n

R
at

e

K
110

K
101

K
011

K
100

K
010

K
001

Figure 9 – ROC III graph for 2D affine Figure 10 – ROC III graph for 3D Euclidean

summation invariants. summation invariants.

Table 3: Results – Comparison of discrimination capabilities for all summation invariants using face
recognition application.

 η10 η01 η20 η11 η02
2D, Eucl., yN=0 0.5772 0.6821 0.5810 0.7192 0.6811
2D, Eucl., xN=0 0.6930 0.5772 0.6812 0.7192 0.4081
2D, Affine 0.6842
 K001 K010 K100 K110 K101 K011
3D, Eucl. 0.4370 0.3746 0.3779 0.4927 0.4749 0.4058

 K200, numer K200,denom
3D, Affine 0.1548 0.2516

University of Wisconsin – Madison Technical Report ECE-07-05

 19 of 30 9/24/2007

 (one horizontal window and one vertical window)
but the 3D invariant calculation only provides one
value for each point. Another possible reason is
the use of arc-length re-sampling for the 2D
invariants, but none for the 3D case. The 3D
affine invariant performed worse than the 3D
Euclidean. The numerator and denominator of the
3D affine summation invariant were shown to be
relative invariants, so experiments were also run
using each of those. No explanation is known at
this time for the dismal performance of the full
invariant compared to the numerator and
denominator performance.

7. CONCLUSIONS

The method of moving frames, a powerful tool for
deriving geometric invariant features, was
described. The summation invariant, a recently
developed geometric invariant with a
demonstrated effectiveness in pattern
classification applications, was discussed in the
context of some of the other major geometric
invariant features. In their semi-local form, these
features have good discrimination capability, but
without the noise sensitivity of the classical
differential-based invariants. The summation
invariants derived so far were summarized and a
systematic approach for deriving new features
using the method of moving frames was outlined.
A detailed example derivation was given to
illustrate the derivation procedure and a naming
convention was proposed. Implementation issues
were examined, including techniques for
enhancing their effectiveness and factors that
reduce their effectiveness in practical imaging
applications. A standard method for comparing
the discrimination ability of the different
summation invariants was given using face
recognition as the application.
 Further work needs to be done to compare
summation invariants with other invariant features
to determine what tasks each is best suited for.
Another area in need of additional exploration is

the effects of re-sampling on the calculation of
other invariants.

8. REFERENCES

[1] W. -Y. Lin, N. Boston, and Y. H. Hu,

“Summation invariant and its application to
shape recognition,” in Proceedings of
ICASSP, 2005, vol. V, pp. 205–208.

[2] W. -Y. Lin, N. Boston, and Y. H. Hu,

“Summation Invariant Features for 3D Face
Recognition,” Proc. IEEE Workshop on
Multimedia Signal Processing, Shanghai,
China, Oct. 30-Nov. 2, 2005.

[3] W. -Y. Lin, K.-C. Wong, Y. H. Hu and N.

Boston, “Face Recognition Using 3D
Summation Invariant Features,” Multimedia
and Expo, 2006 IEEE International
Conference on , vol., no.pp.1733-1736, July
2006.

[4] W. -Y. Lin, K.-C. Wong, N. Boston, and Y.

H. Hu, “3D Human Face Recognition Using
Summation Invariants,” in Proceedings of
ICASSP, 2006, vol. II, pp. 341-344.

[5] W. -Y. Lin, K.-C. Wong, N. Boston, and Y.

H. Hu, “Fusion of Summation Invariants in
3D Human Face Recognition,” in
Proceedings of CVPR, 2006, vol. II, pp. 1369
- 1376.

[6] W. -Y. Lin, “Robust Geometrically Invariant

Features for 2D Shape Matching and 3D Face
Recognition,” Ph.D. dissertation, Dept. Elect.
and Comp. Eng., University of Wisconsin,
Madison, WI, Aug. 2006.

[7] K.-C. Wong, W.-Y. Lin, Y. H. Hu, N.

Boston, and X. Zhang, "Optimal Linear
Combination of Facial Regions for Improving
Identification Performance," to appear in
IEEE Trans. on Systems, Man and

University of Wisconsin – Madison Technical Report ECE-07-05

 20 of 30 9/24/2007

Cybernetics, Part B: Cybernetics, vol. ?, pp.
?-?.

[8] M. K. Hu, “Visual pattern recognition by

moment invariants,” IRE – Trans. on
Information Theory, vol. IT-8, no. 2, pp. 179–
187, 1962.

[9] T. Reiss, “The revised fundamental theorem of

moment invariants,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,
vol. 13, no. 8, pp. 830 – 4, 1991.

 [10] H. Dirilten and T.G. Newman, “Pattern

matching under affine transformations,” IEEE
Trans. Comput., vol. C-26, pp. 314 – 317,
Mar. 1977.

 [11] S. X. Liao and M. Pawlak, “On image

analysis by moments,” IEEE Trans. on
Pattern Analysis and Machine Intelligence,
vol. 18, no. 3, pp. 254 – 266, 1996.

[12] K. Arbter, W. Snyder, H. Burkhardt, and G.

Hirzinger, “Application of affine-invariant
fourier descriptors to recognition of 3-d
objects,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp.
640 – 7, 1990.

[13] M. Khalil and M. Bayoumi, “A dyadic

wavelet affine invariant function for 2d shape
recognition,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 23,
no. 10, pp. 1152 – 1164, 2001.

[14] Y. Wang, C. Chua, and Y. Ho, “Facial

feature detection and face recognition from
2D and 3D images”, Pattern Recognition
Letters, 23:1191–1202, 2002.

 [15] T. Moons, E. J. Pauwels, L. J. V. Gool, and

A. Oosterlinck, “Foundations of semi-
differential invariants,” Intl. Journal of

Computer Vision, vol. 14, no. 1, pp. 25–47,
1995.

[16] E. Calabi, P. J. Olver, C. Shakiban, A.

Tannenbaum, and S. Haker, “Differential and
numerically invariant signature curves applied
to object recognition,” Intl. Journal of
Computer Vision, vol. 26, no. 2, pp. 107–135,
1998.

[17] J. Y. Cartoux, J. T. Lapreste, and M.

Richetin, “Face authentification or
recognition by profile extraction from range
images,” in Proc. of Workshop on
Interpretation of 3D Scenes, 1989, pp. 194–9.

[18] J. Sato and R. Cipolla, “Affine integral

invariants and matching of curves,” in Proc.
of 13th Intl. Conf. on Pattern Recognition,
vol. 1, 1996, pp. 915–19.

[19] C. E. Hann and M. S. Hickman,

“Projective curvature and integral invariants,”
Acta Applicandae Mathematicae, vol. 74, no.
2, pp. 177–193, 2002.

[20] S. Manay, B.-W. Hong, A. Yezzi, and S.

Soatto, “Integral invariant signatures,” ECCV
2004. Proc. (Lecture Notes in Comput. Sci.
Vol.3024), vol. 4, pp. 87 – 99, 2004.

 [21] E. Cartan, “La methode du repere mobile,

la theorie des groupes continus, et les espaces
generalises,” Exposes de Geometrie, no. 5,
1935.

[22] M. Fels and P. J. Olver, “Moving

coframes: I. a practical algorithm,” Acta
Applicandae Mathematicae, vol. 51, no. 2,
pp. 161 – 213, 1998.

[23] ——, “Moving coframes: II. regularization

and theoretical foundations,” Acta
Applicandae Mathematicae, vol. 55, no. 2,
pp. 127 – 208, 1999.

University of Wisconsin – Madison Technical Report ECE-07-05

 21 of 30 9/24/2007

 [24] P. J. Phillips, P. J. Flynn, T. Scruggs, K.
W. Bowyer, J. Chang, K. Hoffman, J.
Marques, J. Min, and W. Worek, “Overview
of the face recognition grand challenge,” in
Proceedings of CVPR, 2005, vol. 1, pp. 947–
54.

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
er

ifi
ca

tio
n

R
at

e

K200

K200-num

K200-denom

Figure 11 – ROC III graph for 3D affine

summation invariants.

University of Wisconsin – Madison Technical Report ECE-07-05

 22 of 30 9/24/2007

Appendix A

Table of Summation Invariant formulas

Euclidean, 2D, (x1,y1,yN) = (0,0,0)

 [] []() [] []() [] [] []() [] [] []()NyxyNNxxxNyNyPxNxPPE −⋅⋅+−⋅⋅+−⋅+−⋅== 111111 1,00,10,10,1η

 [] []() [] []() [] [] [] []()NyxyNxNNxxPyNyPPE ⋅−⋅⋅+−⋅+−⋅== 1111 1,00,11,01,0η

[] []() [] [] [] [] [] []()()22
0,10,20,2 111112 yNyyxNxxNxxPPE +⋅−⋅−−⋅⋅−==η

[] []() [] [] [] [] [] []()()22
1,0 111112 xxNxNyyyNyyP +⋅−⋅−−⋅⋅−

 [] []() [] []()2
2,0

2
0,2 11 NyyPNxxP −⋅+−+

 [] []() [] []() [] [] []()() [] [] []()()()2
1,1 1111112 NyyyNxxxNNxxNyyP −+−⋅+−⋅−⋅⋅+

 [] [] [] [] [] [] [] []1112121(223
0,11,11,1 yxxNyNyNxxyPPE ⋅+⋅⋅−⋅⋅⋅+==η

 [] [] [] [] [] [])1112 222 yNxyNyNyy ⋅−⋅+⋅⋅−

[] [] [] [] [] [] [] []1112121(223
1,0 xyyNxNxNyyxP ⋅+⋅⋅−⋅⋅⋅++

[] [] [] [] [] [])1112 222 xNyxNxNxx ⋅−⋅+⋅⋅−

 () [] []() [] []() [] []() [] []()()22
1,10,22,0 1111 NyyNxxPNxxNyyPP −−−⋅+−−−+

 [] [] [] []() [] [] []() [] [] []()()111111 yNyyxNxxNyxyNxN −⋅+−⋅⋅−⋅⋅+

[] [] [] []() [] []() [] []()()11112 1,00,12,02,0 xNxPyNyPNyxNxyPE −⋅−−⋅⋅⋅−⋅⋅==η

[] []() [] []()2
2,0

2
0,2 11 NxxPNyyP −⋅+−⋅+

[] []() [] []() [] [] [] []()2
1,1 11112 yNxNyxNNyyNxxP ⋅−⋅⋅+−−⋅⋅−

Euclidean, 2D, (x1,y1,xN) = (0,0,0)

 [] []() [] []() [] [] [] []()1111 1,00,10,10,1 yNxNyxNxNxPNyyPPE ⋅−⋅⋅+−⋅+−⋅==η

[] []() [] []() [] [] []() [] [] []()111111 1,00,11,01,0 yNyyNxNxxNNyyPNxxPPE −⋅⋅+−⋅⋅+−⋅+−⋅==η

[] []() [] [] [] []()()NxyxNyNyyPPE ⋅−⋅−⋅⋅== 1112 0,10,20,2η

[] []() [] [] [] []()()1112 1,0 xNyNxyNxxP ⋅−⋅−⋅⋅+

 [] []() [] []()2
2,0

2
0,2 11 NxxPNyyP −⋅+−+

 [] []() [] []() [] [] [] []()2
1,1 11112 xNyNxyNxNxNyyP ⋅−⋅⋅+−⋅−⋅⋅+

[] [] [] [] [] [] []()NyyyxNyNxyPPE ⋅⋅+−−−== 12111(2222
0,11,11,1η

[] [] [] []())112 NxxNyx −⋅⋅⋅+

 [] [] [] [] [] [] []()NxxNxNyxyxP ⋅⋅−+−++ 12111(2222
1,0

[] [] [] []())112 yNyNxy −⋅⋅⋅+

 () [] []() [] []() [] []() [] []()()22
1,12,00,2 1111 xNxyNyPNxxNyyPP −−−⋅+−−−+

 [] [] [] [] []() [] [] [] []()11111(22 xNxNyxNxxyNxyN −⋅⋅+−⋅⋅⋅+

 [] [] [] [] []() [] [] [] []())11111 22 xNxNyyNxxNyyx +⋅⋅−⋅+⋅⋅+

University of Wisconsin – Madison Technical Report ECE-07-05

 23 of 30 9/24/2007

[] []() [] [] [] [] [] []()()111112 2
0,12,02,0 xNxxNyyyxNxPPE −−⋅−−⋅⋅==η

[] []() [] [] [] [] [] []()()111112 2
1,0 yNyyNxxxyNyP −−⋅−−⋅⋅+

[] []() [] []()2
2,0

2
0,2 11 yNyPxNxP −⋅+−⋅+

[] []() [] []()NxxNyyP −−⋅⋅+ 112 1,1

[] [] [] [] [] [] []1121121(22222 xyxNyyNxxN ⋅⋅+⋅⋅⋅−⋅⋅+

 [] [] [] [] [] [] []NxxyNxxNyy ⋅⋅⋅−⋅⋅⋅⋅+ 112112 2

[] [] [] [] [] [] [] [])1211112 344223 NyyxyNyyNxx ⋅⋅−++⋅+⋅⋅−
Affine, 2D, (x1,y1, xN, yN, P10, P01) = (0,0,1,1,0,0)
 (Note : both the numerator and denominator are relative invariants.)

 []() []()2
0,12,0

2
1,00,20,2 11{ PxNPPyNPA −⋅⋅+−⋅⋅=η

 []() []() [] []() }11112 2
1,00,11,00,11,1 PxPyNPyNPxNP ⋅−⋅⋅−−⋅⋅−⋅⋅⋅−

 [] [] [] []() [] []() [] []()(){ }2
1,00,1 1111/ xNxPyNyPNyxyNxN −⋅−−⋅+⋅−⋅⋅

Euclidean, 3D, (x11,y11,z11, yM1, zM1, z1N) = (0,0,0,0,0,0)

−

=

T

z

y

x

RRR

z

y

x

323 , where

[]
[]
[]

=
1,1

1,1

1,1

z

y

x

T , then let

[]
[]
[]

=
1,

1,

1,

Mz

My

Mx

A and express A in spherical coordinates

(ra, θa, φa) , then

−=
100

0cossin

0sincos

1 aa

aa

R φφ
φφ

 , and

−
=

aa

aa

R

θθ

θθ

sin0cos

010

cos0sin

2 , then,

let

[]
[]
[]

−

=

= T

Nz

Ny

Nx

RR

B

B

B

B

z

y

x

,1

,1

,1

12 , and define

=

x

z

y

B

B

B

C , then express C in spherical coordinates (rc, θc, φc),

and let

−
=

cc

ccR

φφ
φφ

cossin0

sincos0

001

3 . Then R1, R2, R3 and T form a moving frame – apply to potentials to get invariants

as

 shown below.

 ∑
=

=
N

n

E x
1

0,0,1κ , where x is calculated by the transformation given above.

 ∑
=

=
N

n

E y
1

0,1,0κ , where y is calculated by the transformation given above.

 ∑
=

=
N

n

E z
1

1,0,0κ , where z is calculated by the transformation given above.

University of Wisconsin – Madison Technical Report ECE-07-05

 24 of 30 9/24/2007

Affine, 3D, (x11,y11,z11,xM1, yM1, zM1, x1N, y1N, z1N,P100,P010,P001) = (0,0,0,1,0,0,0,1,0,0,0,0)

 }))y-(y x)y-(y x)y-(y(xQ

))z- (z x)z -(z x)z-(z(xQ

))z-(zy)z-(zy)z-(z(yQ

)))zy-z(y x)zy -z(y x)zy-z(y{(MN(x/

}))yx-y(xQ)zx-z(xQ)zy-z(yMN(Q-

))y-(yQ)z-(zQ)zy-z(MN(y

))x-(xQ)y-(yQ)yx-y(MN(x2Q-

))y-(yQ)z-(zQ)zy-z(MN(yQ

))y-(yQ)z-(zQ)zy-z(MN(y

))x-(xQ)z-(zQ)z x-z(MN(x2Q-

))x-(xQ)z-(zQ)zx-z(MN(xQ

))x-(xQ)z-(zQ)zx-z(MN(x

)) x-(xQ)y -(yQ)yx-y(MN(xQ2-

))x-(xQ)y-(yQ)y x-y(MN(x{Q

2
001001010010100100001

100001000110011000010

001001010010100100100

001010000101000001101001011000

2
010000010010001010001001000001100

0001001010001000010100

0100010000110001000001101

2
0100001000101001000001200

0100001000101001000001

0100001000110001000001110

2
0100001000110001000001020

0100001000110001000001

0100010000110001000001011

2
01000100001100010000010,0,2

A
2,0,0

+++

+++
+++

++
++

++
++

+++

++
++
+++

++
++⋅

++=κ

where, x00 = x[1, 1]; y00 = y[1, 1]; z00 = z[1, 1]; x10 = x[M, 1]; y10 = y[M, 1]; z10 =z[M, 1];
 x01 = x[1, N]; y01 = y[1, N]; z01 = z[1, N].

University of Wisconsin – Madison Technical Report ECE-07-05

 25 of 30 9/24/2007

Appendix B

Maple file – Derivation of moving frame and Summation Invariants

> #
Curve Euclidean invariant eta_y
g o (x0,y0,x1) = (0,0,0)

eqn1:=cos(theta)*x0-sin(theta)*y0+a=0:
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0:
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0:
solve({eqn1,eqn2,eqn3},{theta,a,b}):
eval(sin(theta)*Px+cos(theta)*Py+b*N,%):simplify(%);

K
1

(Ky1C y0)
y02

K 2 y0 y1C y12
C x02

K 2 x0 x1C x12

(Ky1C y0)2

(KPx x0CPx x1CPy y1KPy y0
CN x02

KN x0 x1KN y0 y1CN y02)

> #
Curve Euclidean invariant eta_x
g o (x0,y0,x1) = (0,0,0)

eqn1:=cos(theta)*x0-sin(theta)*y0+a=0:
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0:
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0:
solve({eqn1,eqn2,eqn3},{theta,a,b}):
eval(cos(theta)*Px-sin(theta)*Py+a*N,%):
simplify(%);

K
Px y1KPx y0CPy x0KPy x1KN x0 y1CN y0 x1

(Ky1C y0)
y02

K 2 y0 y1C y12
C x02

K 2 x0 x1C x12

(Ky1C y0)2

> #
Curve Euclidean invariant eta_xx
g o (x0,y0,x1) = (0,0,0)

eqn1:=cos(theta)*x0-sin(theta)*y0+a=0:
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0:
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0:
solve({eqn1,eqn2,eqn3},{theta,a,b}):
eval(Pxx*cos(theta)^2 + Pyy*sin(theta)^2 - 2*Pxy*cos(theta)*sin(theta) +
2*a*(cos(theta)*Px - sin(theta)*Py) + a^2*N,%):
simplify(%);

University of Wisconsin – Madison Technical Report ECE-07-05

 26 of 30 9/24/2007

1

y02
K 2 y0 y1C y12

C x02
K 2 x0 x1C x12

 (K2 y02 Px x1

C y02 PxxC y02 N x12
C 2 y0 y1 Px x0C 2 y0 Pxy x1

C 2 x0 x1 Py y0K 2 y0 N y1 x0 x1
C 2 y0 y1 Px x1K 2 y0 Pxx y1K 2 y0 Pxy x0K 2 y0 x12 Py
CPyy x02

CPyy x12
K 2 Pyy x0 x1K 2 Pxy x1 y1

K 2 y12 Px x0CN y12 x02
K 2 x02 Py y1C 2 Pxy x0 y1

C 2 x0 x1 Py y1CPxx y12)

> simplify(numer(%));

K2 y02 Px x1C y02 PxxC y02 N x12
C 2 y0 y1 Px x0

C 2 y0 Pxy x1C 2 x0 x1 Py y0K 2 y0 N y1 x0 x1
C 2 y0 y1 Px x1K 2 y0 Pxx y1K 2 y0 Pxy x0K 2 y0 x12 Py
CPyy x02

CPyy x12
K 2 Pyy x0 x1K 2 Pxy x1 y1

K 2 y12 Px x0CN y12 x02
K 2 x02 Py y1C 2 Pxy x0 y1

C 2 x0 x1 Py y1CPxx y12

> #
Curve Euclidean invariant eta_xy
g o (x0,y0,x1) = (0,0,0)

eqn1:=cos(theta)*x0-sin(theta)*y0+a=0:
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0:
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0:
solve({eqn1,eqn2,eqn3},{theta,a,b}):
eval((Pxx - Pyy)*sin(theta)*cos(theta) + Pxy*(cos(theta)^2 - sin(theta)^2) +
Px*(b*cos(theta) + a*sin(theta)) + Py*(a*cos(theta) - b*sin(theta)) + a*b*N,%):
simplify(%);

1

y02
K 2 y0 y1C y12

C x02
K 2 x0 x1C x12

 (y0 x1 Pyy

K y0 x1 PxxK y0 x0 PyyC y0 x0 PxxK y1 x1 Pyy
C y1 x1 PxxC x0 y1 PyyK x0 y1 Pxx
CN y03 x1KN x03 y1CPy y02 x0
CPy x0 x12

K 2 Py x02 x1K 2 Py y02 x1KPy x0 y12

CPx y0 x12
C 2 Px y02 y1KPx y0 y12

KPx x02 y0
C 2 Px x02 y1C 2 Pxy x0 x1K 2 Pxy y0 y1
C 2 Py y0 x1 y1K 2 Px x0 x1 y1CN x02 y1 x1
CN x0 y12 y0KN y0 x12 x0
CN y0 x1 x02

KN x0 y1 y02
KN y02 x1 y1

CPy x03
KPx y03

KPxy x02
KPxy x12

CPxy y02

CPxy y12)

> #

University of Wisconsin – Madison Technical Report ECE-07-05

 27 of 30 9/24/2007

Curve Euclidean invariant eta_yy
g o (x0,y0,x1) = (0,0,0)

eqn1:=cos(theta)*x0-sin(theta)*y0+a=0:
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0:
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0:
solve({eqn1,eqn2,eqn3},{theta,a,b}):
eval(Pxx*sin(theta)^2 + Pyy*cos(theta)^2 + 2*Pxy*cos(theta)*sin(theta) +
2*b*(sin(theta)*Px + cos(theta)*Py) + b^2*N,%):
simplify(%);

1

y02
K 2 y0 y1C y12

C x02
K 2 x0 x1C x12

 (Pxx x12
CPyy y12

C 2 x0 x1 Py y0
C 2 y0 y1 Px x0K 2 y0 y1 Px x1K 2 y0 N x02 y1
CN x02 x12

C 2 y0 Pxy x0K 2 y0 Pyy y1K 2 y0 Pxy x1
C 2 y02 N x02

C y02 Pyy
C 2 y0 N y1 x0 x1K 2 y02 N x0 x1K 2 N x03 x1
K 2 Pxx x0 x1C 2 Pxy x1 y1C y02 N y12

CN y04
K 2 x02 Py y0C 2 x02 Py y1C 4 x02 Px x1CN x04

CPxx x02
K 2 Pxy x0 y1K 2 x0 x12 PxK 2 y03 N y1

K 2 x03 PxK 2 y03 Py
C 2 y02 Px x1K 2 x0 x1 Py y1K 2 y02 Px x0
C 4 y02 y1 PyK 2 y0 y12 Py)

>

University of Wisconsin – Madison Technical Report ECE-07-05

 28 of 30 9/24/2007

Appendix C

Matlab files

Check invariance

% Check the result of
% "krw1_curve_Eu_inv"
% Author: K.R. Widder
% Time-stamp: 11/24/06
% E-mail: widder@wisc.edu
% (C) 2006 by Kerry Widder
% created: 11/24/2006
% adapted from file created by Wei-Yang Lin

clear all;
close all;
clc;

N = 70;
theta = 0:pi/3/(N-1):pi/3;
x = cos(theta);
y = sin(theta);
[Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv_den om(x',y');
disp('% krw1_curve_Eu_sum_inv_denom');
disp(['(Ix, Iy, Ixx, Ixy, Iyy) = (' num2str(Ix) ', '...
 num2str(Iy) ', ' num2str(Ixx) ', ' num2str(Ixy) ', ' num2str(Iyy) ')']);

% plot(x,y,'r:'), hold on;
disp('% krw1_curve_Eu_sum_inv');

for i = 1:10
 theta = 2*pi*rand(1);
 t1 = 100*randn(1);
 t2 = 100*randn(1);
% disp(['(theta, t1, t2) = (' num2str(theta*360/ 2/pi) ', '...
% num2str(t1) ', ' num2str(t2) ')'])
 R = [cos(theta) -1*sin(theta); sin(theta) cos (theta)];
 T = [t1 t2]';
 pts = [x;y];
 pts = R*pts + T*ones(1,N);
 xx = pts(1,:);
 yy = pts(2,:);
 [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv (xx',yy');
 disp(['(Ix, Iy, Ixx, Ixy, Iyy) = (' num2str(Ix) ', '...
 num2str(Iy) ', ' num2str(Ixx) ', ' num2str (Ixy) ', ' num2str(Iyy) ')']);
end
plot(x,y,'r:'), hold off;

University of Wisconsin – Madison Technical Report ECE-07-05

 29 of 30 9/24/2007

Calculate Summation Invariants

function [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_su m_inv(x,y)
% krw1_curve_Eu_inv compute Euclidean summation inv ariant of curve
% like Eq. (2.12 - 2.16) in Wei-Yang's thesis, only different normalization
% Uses normalization equation: (x(1), y(1), x(N)) = (0,0,0)
%
% [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv (x,y)
% x : N x 1 column vector
% y : N x 1 column vector
%
%
% ,where
% (x(1),y(1)) is initial point
% (x(N),y(N)) is end point
% P10 = sum_1^N x(t)
% P01 = int_1^N y(t)
% P20 = sum_1^N x(t)^2
% P11 = int_1^N x(t)*y(t)
% P02 = sum_1^N y(t)^2
%
% Author: K.R. Widder
% Time-stamp: 11/24/06
% E-mail: widder@wisc.edu
% (C) 2006 by Kerry Widder
% created: 11/24/2006

% x : N x 1 column vector
% y : N x 1 column vector

N = size(x,1);

P10 = sum(x);
P01 = sum(y);
P20 = sum(x.*x);
P11 = sum(x.*y);
P02 = sum(y.*y);

%I_1 = N^2*(x(1)^2 + y(1)^2) + P10^2 + P01^2 - 2*N* (x(1)*P10 + y(1)*P01);

Iy = P10*(x(1) - x(N)) + P01*(y(1) - y(N)) + N*x(1)*(x(N) - x(1)) + N*y(1)*(y(N) - y(1));

Ix = P01*(x(N) - x(1)) + P10*(y(1) - y(N)) + N*(x (1)*y(N) - x(N)*y(1));

Ixx = 2*P10*((y(1) - y(N))*(y(N)*x(1) - y(1)*x(N))) ...
 + 2*P01*(x(1) - x(N))*(y(1)*x(N) - y(N)*x(1))...
 + P02*((x(1) - x(N))^2) + P20*((y(1) - y(N))^2) ...
 + 2*P11*(x(N) - x(1))*(y(1) - y(N))...
 + N*(((y(1)*x(N)) - (x(1)*y(N)))^2);

Ixy = P10*(y(1)*(x(N)^2 - y(N)^2 - x(1)^2 -y(1)^ 2 + 2*y(1)*y(N)) + 2*x(1)*y(N)*(x(1) - x(N)))...
 + P01*(x(1)*(y(1)^2 + x(1)^2 - y(N)^2 + x(N) ^2 - 2*x(1)*x(N)) + 2*y(1)*x(N)*(y(N) - y(1)))...
 + (P20 - P02)*(x(1) - x(N))*(y(1) - y(N))...
 + P11*((y(N) - y(1))^2 - (x(N) - x(1))^2).. .
 + N*(y(1)*x(N)*(y(1)^2 - x(1)*x(N)) + (x(1)^ 2)*y(N)*(x(N) - x(1)) + x(1)*y(1)*((y(N)^2) +
x(N)*x(1))...
 - (y(1)^2)*y(N)*(x(N) + x(1)));

Iyy = 2*P10*((x(N) - x(1))*((y(1)^2) - y(N)*y(1) - x(1)*(x(N) - x(1))))...
 + 2*P01*((y(N) - y(1))*((x(1)^2) - x(N)*x(1) - y(1)*(y(N) - y(1))))...
 + P20*((x(N) - x(1))^2) + P02*((y(N) - y(1))^2) ...
 + 2*P11*((y(1) - y(N))*(x(1) - x(N)))...
 + N*((x(N)^2)*(x(1)^2) - 2*y(N)*y(1)*(x(1)^2) + 2*(y(1)^2)*(x(1)^2)...
 + 2*y(N)*y(1)*x(N)*x(1) - 2*(y(1)^2)*x(N)*x(1) - 2*x(N)*(x(1)^3)...
 + (y(1)^2)*(y(N)^2) + (y(1)^4) + (x(1)^4) - 2*y (N)*(y(1)^3));

University of Wisconsin – Madison Technical Report ECE-07-05

 30 of 30 9/24/2007

function [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_su m_inv_denom(x,y)
% krw1_curve_Eu_inv compute Euclidean summation inv ariant of curve
% like Eq. (2.12 - 2.16) in Wei-Yang's thesis, only different normalization
% Uses normalization equation: (x(1), y(1), x(N)) = (0,0,0)
%
% [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv _denom(x,y)
% x : N x 1 column vector
% y : N x 1 column vector
%
% ,where
% (x(1),y(1)) is initial point
% (x(N),y(N)) is end point
% P10 = sum_1^N x(t)
% P01 = int_1^N y(t)
% P20 = sum_1^N x(t)^2
% P11 = int_1^N x(t)*y(t)
% P02 = sum_1^N y(t)^2
%
% Author: K.R. Widder
% Time-stamp: 11/24/06
% E-mail: widder@wisc.edu

N = size(x,1);
P10 = sum(x);
P01 = sum(y);
P20 = sum(x.*x);
P11 = sum(x.*y);
P02 = sum(y.*y);
D = (y(N) - y(1))^2 + (x(N) - x(1))^2;
Droot = sqrt(D);

%I_1 = N^2*(x(1)^2 + y(1)^2) + P10^2 + P01^2 - 2*N* (x(1)*P10 + y(1)*P01);

Iy = (1/Droot)*(P10*(x(1) - x(N)) + P01*(y(1) - y(N)) + N*x(1)*(x(N) - x(1)) + N*y(1)*(y(N) - y(1))) ;

Ix = (1/Droot)*(P01*(x(N) - x(1)) + P10*(y(1) - y(N)) + N*(x(1)*y(N) - x(N)*y(1)));

Ixx = (1/D)*(2*P10*((y(1) - y(N))*(y(N)*x(1) - y(1) *x(N)))...
 + 2*P01*(x(1) - x(N))*(y(1)*x(N) - y(N)*x(1))...
 + P02*((x(1) - x(N))^2) + P20*((y(1) - y(N))^2) ...
 + 2*P11*(x(N) - x(1))*(y(1) - y(N))...
 + N*(((y(1)*x(N)) - (x(1)*y(N)))^2));

Ixy = (1/D)*(P10*(y(1)*(x(N)^2 - y(N)^2 - x(1)^2 -y(1)^2 + 2*y(1)*y(N)) + 2*x(1)*y(N)*(x(1) - x(N))
)...
 + P01*(x(1)*(y(1)^2 + x(1)^2 - y(N)^2 + x(N) ^2 - 2*x(1)*x(N)) + 2*y(1)*x(N)*(y(N) - y(1)))...
 + (P20 - P02)*(x(1) - x(N))*(y(1) - y(N))...
 + P11*((y(N) - y(1))^2 - (x(N) - x(1))^2).. .
 + N*(y(1)*x(N)*(y(1)^2 - x(1)*x(N)) + (x(1)^ 2)*y(N)*(x(N) - x(1)) + x(1)*y(1)*((y(N)^2) +
x(N)*x(1))...
 - (y(1)^2)*y(N)*(x(N) + x(1))));

Iyy = (1/D)*(2*P10*((x(N) - x(1))*((y(1)^2) - y(N)* y(1) - x(1)*(x(N) - x(1))))...
 + 2*P01*((y(N) - y(1))*((x(1)^2) - x(N)*x(1) - y(1)*(y(N) - y(1))))...
 + P20*((x(N) - x(1))^2) + P02*((y(N) - y(1))^2) ...
 + 2*P11*((y(1) - y(N))*(x(1) - x(N)))...
 + N*((x(N)^2)*(x(1)^2) - 2*y(N)*y(1)*(x(1)^2) + 2*(y(1)^2)*(x(1)^2)...
 + 2*y(N)*y(1)*x(N)*x(1) - 2*(y(1)^2)*x(N)*x(1) - 2*x(N)*(x(1)^3)...
 + (y(1)^2)*(y(N)^2) + (y(1)^4) + (x(1)^4) - 2*y (N)*(y(1)^3)));

