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ABSTRACT 
 
The method of moving frames, a powerful 
mathematical tool for deriving geometrically 
invariant functions, is described. A systematic 
approach is outlined for the derivation of new 
members of a family of geometrically invariant 
features using the moving frame method. This 
family of features is called summation invariant. 
An example derivation is given to illustrate the 
procedure. The current members of this family are 
summarized and several implementation 
considerations for these features are investigated. 
A naming convention is given and a standard test 
is defined for the purpose of comparing the 
discrimination ability of these features. This test is 
used to compare the features derived so far using 
the application of face recognition and the Face 
Recognition Grand Challenge (FRGC2.0) dataset. 

 

1. INTRODUCTION 
 
Invariant features are an important tool in the 
pattern recognition toolbox. Objects to be 
recognized in images usually are not guaranteed to 
be in the same location, of the same orientation, of 
the same size, nor even with the same shape. 
Thus, having a descriptive feature that is invariant 
to geometric transformations, like translation, 
rotation, scale or shear, or that is invariant to all of 
them, is highly desirable. Summation invariants 

are one family of geometrically invariant features 
that was developed recently [1-7].  
 This paper will briefly review some other 
existing invariant features and will  summarize the 
summation invariants developed thus far. Then, it 
will describe the moving frame method and 
present a systematic approach for deriving 
summation invariants. Some implementation 
issues will also be analyzed. A standard 
experiment will be defined and used to evaluate 
the discrimination performance of the summation 
invariants derived so far. 
 

2. INVARIANT FEATURES 
 
2.1. Previous work 
 
One of the early geometric invariant features is the 
moment invariant [8]. This type of feature is 
global in nature, using the whole image, and is 
invariant to rotation, translation, and scale, and in 
some cases even to illumination changes [9]. The 
global nature limits the discrimination ability of 
moment invariants, requiring the use of higher 
order moments to improve this ability. The higher 
order moments contain the detail information 
about the image. The performance of this class of 
invariant with occlusions is hindered by the global 
nature of this feature. The higher order moments 
are more susceptible to being affected by noise, 
which limits their usefulness, and hence the 
amount of detail which can be included. Moment 
invariants have been applied to areas such as 
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airplane recognition [10] and Chinese character 
representation [11]. 
 Fourier descriptors utilize a set of Fourier 
transform coefficients to represent a closed curve. 
The normalization of these descriptors to a 
transformation group results in them being 
invariant to transformations within that group. The 
similarity transform is usually used (rotation, 
translation and scale), although the affine 
transformation group has also been used [12]. The 
global nature of the Fourier transform prevents the 
extraction of localized feature information. 
However, unlike moment invariants, the feature 
space will be inherently large. The higher order 
detail coefficients will tend to be more affected by 
noise, so noise immunity can be tuned by 
dropping some portion of the higher order 
coefficients. These features have been applied to 
airplane recognition [12].  
 Wavelet based invariants offer better 
localization than Fourier methods and offer 
multiple resolution levels. Dyadic wavelet features 
with invariance to affine transformations have 
been developed [13]. Noise sensitivity is 
adjustable by changing the number of resolution 
levels used, i.e., dropping higher resolution 
coefficients will improve the noise performance at 
the expense of a loss of detail. Dyadic wavelet 
invariants have been applied to airplane 
recognition [13] and Gabor wavelet invariants 
have been applied to face recognition [14]. 
 Differential invariant features have been 
widely studied and applied. They are local in 
nature, but the use of high order derivatives in 
their calculation makes them sensitive to noise. 
Methods to minimize the noise sensitivity have 
been proposed, such as semi-differential 
invariants [15] and numerical approximations 
[16]. Differential invariants have a large feature 
space, which improves discrimination 
performance, and their local nature allows the 
accommodation of occlusions. Differential 
invariants have been applied to medical images 
[16] and face recognition [17]. 

 Integral invariant features are global in 
nature, but can be made ‘semi-local’ by changing 
the limits on the integration [18]. This technique 
will also increase the size of the feature space and 
improve the discrimination ability of these 
features, as well as allow for handling occlusions. 
The integral invariant features are derived from 
‘potentials’ involving integration, instead of 
derivatives, giving them a decreased sensitivity to 
noise [19]. Another advantage to this invariant is a 
systematic method of deriving new features. 
Integral invariants have been applied to natural 
images (leaves) [18] and fish and hand shapes 
[20]. 
 
 2.2. Summation invariant 
 
Summation invariants share many of the features 
of integral invariants, including being global in 
nature, able to be made semi-local to increase the 
feature space and handle occlusions, decreased 
sensitivity to noise and a systematic method for 
deriving new invariants. However, summation 
invariants are defined with potentials that are 
summations instead of integrals, so calculating 
them will not involve numerical approximations. 
Summation invariants have been applied to fish 
shapes [1, 6] and face recognition [4-7]. 

 
 

3. SUMMATION INVARIANT 
 
The idea of summation invariant is based on the 
mathematical method of moving frames. The 
notion of moving frames was first proposed by 
Cartan [21], and later formalized into a systematic 
method by Fels and Olver [22, 23]. To understand 
and use this method, several concepts need to be 
defined. In this section, brief definitions and a 
synopsis of the method in its simplest form are 
given, followed by extensions of the method using 
jet spaces. Then, a systematic procedure is given 
for deriving new families of summation 
invariants, a naming convention is proposed and a 
detailed example derivation is given. 
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3.1. Cartan’s Method of Moving Frames 
 
Cartan’s method of moving frames provides a 
framework for deriving geometric invariants for a 
specific transformation group. Given a manifold, 
M, of dimension, m, and a Lie group, G, of 
dimension, r, acting smoothly on M, invariant 
functions ℜ→MI :  meaning that I(g◦z) = I(z), 
for all Gg ∈  and Mz∈ , are desired. Moving 
frames provide a mechanism for systematically 
deriving these invariant functions. Since moving 
frames are intimately connected to a 
transformation group, any invariants coming from 
this method will only be invariant to 
transformations within that group, or 
transformation groups that are subsets of the 
group the invariants were derived under. The 
concepts discussed here will be illustrated using a 
simple example consisting of a manifold, M = 

2ℜ , and a transformation group, G = SO(2), 
consisting of rotations of angle θ about the origin. 

A parameterized curve in 2ℜ  is a curve 
where some other variable, or parameter, is used 
to identify points on the curve. Examples of 
parameters include arc-length, time and order 
(sample number). A curve describing the motion 
of an object, like y = f(x) = ax2, could be 
parameterized by time, as y(t) = a(x(t))2. If 
samples are taken of a continuous curve, then that 
curve is parameterized by n, where 1 ≤ n ≤ N is 
the sample number. If this curve is transformed 
geometrically, the transformed curve can be 
described by another set of points parameterized 

by n, { [ ] [ ]( )nynx , ; 1 ≤ n ≤ N} such that [ ] [ ]( )nynx ,  
is transformed from (x[n], y[n]) for each n. The 
same idea can be extended to higher dimensions, 
e.g., surfaces in 3ℜ . 

A potential, Pi,j , of order k is defined as: 

 [ ] [ ]∑= nynxP ji
ji ,    ,   (3.1) 

where k = i + j, and i, j ≥ 0. The average values of 
the variables can be recovered from the first order 

potentials (k = 1) by dividing by N, the number of 
samples. 
 Potentials are similar to moments, but 
more general. For a discrete function, f(x), the 
moment is defined by: 
 ( )∑= xfxm p

p    (3.2) 

which can be put in parameterized form as 
follows: 
 [ ] [ ]∑=

n

p
p nynxm   ,    (3.3) 

where y = f(x). In this formulation, it is evident 
that potential Pi,1 is the same as mi, or Pi,1 = mi. 
Extending to the case of a surface, Pi,j,1 = mi,j. 
These observations lead to the following lemma: 
 
Lemma: A geometric moment is equal to a 
potential with the last index equal to one. (Note: 
the dimension of the moment is one less than the 
potential.) 
 

A parameterized 3D surface in 3ℜ  can be 
described by a set of points 

{ [ ] [ ] [ ]( ), , ,x m n y m n z m n , 1 ≤ m ≤ M, 1 ≤ n ≤ 

N}.  In this case, a potential, Qi,j,k , of order l is 
defined as: 

 [ ] [ ] [ ]nmznmynmxQ k
M

m

N

n

ji
kji ,,,

1 1
,, ∑∑

= =

= ,  

      (3.4) 
where l = i + j + k, and i, j, k ≥ 0. 
 A manifold, M, is an object for which 
every local neighborhood looks like a subset of 
Euclidean space. A 1D manifold is a smooth curve 
with no self-intersection. An example of a 2D 
manifold is a torus.  
 An orbit, Oz, is the set of all 
transformations of z under the action of the given 
transformation group. In the example M = 2ℜ  and 
G being rotation around the origin, an orbit is the 
set of all circles centered on the origin. 
 A canonical set, K, is a subset of M such 
that K intersects each orbit of z at exactly one 
point, u. In the example given above, one possible 
canonical set would be the x-axis from the origin 
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to +∞, since each orbit (circle centered on the 
origin) would intersect it at only one point. 
 A free action is one where given points a 
and b there is at most one transformation that 
sends point a to point b. An example of action that 
is not free is the situation with G = SE(2) 
(rotations about the origin by angle θ and 
translations by a and b in the x and y directions, 
respectively) and M = 2ℜ  . For a = (1,0) and b = 
(0,1), two of the transformations that will take a to 
b are (θ, a, b) = (π/2, 0, 0) and (θ, a, b) = (0, -1, 1), 
thus the action is not free. 

A transformation group, G, acting on a 
manifold, M, is a group with smooth action that 
satisfies  

e◦z=z,  g◦(h◦z)= (g◦h)◦z,    (3.5) 
for all Mz∈ , Gg ∈ , where e is an identity 
element in the group. Examples include Euclidean 
(rotation and translation) and affine (rotation, 
translation, scaling and shear). 
 Smooth action of a transformation group 
means that the group operation is infinitely 
differentiable. In the example, the group action of 
rotation about the origin by angle θ takes a point 

(x,y) to a point ( )yx, , where ( )yx,  = ((x·cos θ - 
y·sin θ), (x·sin θ + y·cos θ)), which is clearly 
infinitely differentiable. 
 A moving frame is loosely defined as a 
function of z (where z is a point on the manifold 
M) that produces the unique transformation, 

Gg ∈ , that sends z into K. The existence of a 
moving frame is dependent on the group action on 
the manifold being free.  It is called ‘moving’ 
since it is different for each point on the manifold. 
More formally, it is a smooth map, ρ:M�G, such 
that ρ(g◦z) =g◦ ρ(z) for all Gg ∈ and Mz∈ . In 

the example, a moving frame for M = 2ℜ , and G 
being rotation around the origin, is – θ, where θ is 
the angle of the point z with respect to the x-axis, 
and where K is the x-axis from the origin to +∞. 
 If an invariant function I(z) is given, then 
any function of I, f(I(z)), is also invariant for G 
acting on M. The invariants, I1, …, Ik, are 
fundamental invariants for G acting on M if three 

conditions are satisfied: 1) they are indeed 
invariant, 2) none of them are redundant, and 3) 
every invariant can be expressed as a function of 
them. 
 The number of fundamental invariants that 
can be derived using the moving frame method is 
limited to k, where k = m-r, (m > r), with m the 
dimension of M and r the dimension of G. Once 
the moving frame is derived, it can be applied to 
the remaining k dimensions of M not fixed in the 
canonical form to give k invariant functions.  
 To see how this works, let z = (z1, …, zm) 
be a point on the manifold M, and let w(g, z) = 
(w1(g, z), …, wm(g, z)) be the explicit formulas for 

the group transformation of z (i.e., ( )zgwz ,11 = ). 
Then the canonical set, K, will fix r coordinates of 
M, i.e., K = {z1 = c1, …, zr = cr}, where the ci’s are 
constants. The moving frame is found by solving  

w1 = c1, …, wr = cr    (3.6) 
for the transformation group parameters. This set 
of group parameters is the moving frame since it 
will transform any point z in M to K. The set of 
equations (3.6) is called the normalization 
equations.  
 The invariant functions are derived by 
taking the moving frame and applying it to the 
remaining explicit formulas not fixed by K, i.e., 
wr+1, …, wm. More formally, the invariant 
functions are given by 

I1(z) = wr+1(ρ(z), z),  
…,  
Ik(z) = wr+1(ρ(z), z)   (3.7) 

and are invariant for any Gg ∈ . 
 To see that these functions are invariant, 
consider two points in M, z and z′, related by a 
transformation Gh∈ , i.e., z′ = h◦z. These points 
are by definition in the same orbit. A moving 
frame ρ(z), derived using (3.6), will take z and z′ 
and transform them to u and u′, where u and u′ are 
in K, and u = (c1,…,cr,wr+1(ρ(z), z),…, wm(ρ(z), z)) 
and u′ = (c1,…,cr,wr+1(ρ(z′), z′),…, wm(ρ(z′), z′)). 
Since z and z′ are in the same orbit, and K by 
definition intersects each orbit in only point, then 
u = u′ and hence wr+1(ρ(z), z) = wr+1(ρ(z′), z′), etc., 
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and I1,…,Ik are invariant to all transformations in 
G.  

Applying this procedure to the simple 
example used in this section, where M = 2ℜ , and 
G = SO(2) ( rotations of angle θ about the origin), 
m = 2, r = 1 and k = 1. Thus, one invariant can be 
derived. Let { }0,0| ≥== xyxK , the set of all 
points on the positive x-axis plus the origin. The 
wi’s are given by 
 θθ sincos1 ⋅−⋅= yxw  

 θθ cossin2 ⋅+⋅= yxw   (3.8) 
and the normalization equation is  

0cossin2 =⋅+⋅= θθ yxw   (3.9) 
where only one wi is made constant since r = 1. 

Solving for θ gives the moving frame, 
which is 

 ( ) 






−== −

x

y
z 1tanθρ           (3.10) 

The invariant is found by applying the moving 
frame to w1, the wi not used in the normalization 
equations, giving 

 ( )( ) 22
11 ,,)( yxyxzwzI +== ρ     (3.11) 

which is the distance of z from the origin. 
Intuitively this makes sense, since as a point is 
rotated about the origin, its distance from the 
origin will remain constant. 
 
3.2 Extensions using Jet Space 
 
The number of fundamental invariants that can be 
derived using this method is k, where k = m – r, m 
is the dimension of the manifold and r is the 
dimension of the group action. In the example of 
the previous section, with m = 2 and r = 1, then k 
= 2 – 1 = 1. If m < r, then the action is not free 
and it is necessary to replace the manifold, M, by a 
larger-dimensional manifold, namely jet space, 
before the moving frame method can be applied. 
This expansion can be as large as needed – the 
more dimensions added, the greater the number of 
invariant functions that can be generated. In the 
previous section, the example was a case where 
the group action was free, hence the moving frame 
existed and an invariant could be found. In 

general, this will not be the case, since usually the 
group action will have a higher dimension than 
the manifold.  
 Consider a new example, where M = 2ℜ  
and G = SE(2) (rotations about the origin by angle 
θ and translations by a and b in the x and y 
directions, respectively). The group action in this 
example will map a point z = (x, y) into a 

transformed point ( )yxz ,= , where 

 ayxx +⋅−⋅= θθ sincos  

 byxy +⋅+⋅= θθ cossin           (3.12) 
In this example, m = 2, r = 3 and k = -1 and the 
group action is not free. This means a moving 
frame does not exist and the moving frame 
method cannot be used to find invariants. To 
overcome this limitation, a manifold must be 
found with dimension greater than the group 
action. This is accomplished by generating a jet 
space with sufficient dimension and using it for 
deriving the invariants. 

Traditionally, a jet space, Jn, is a Euclidean 
space with additional coordinates corresponding 
to the derivatives of the dependent variables, up to 
the nth order: 
 (x, u(n) ) ,             (3.13) 
where x represents all the independent variables 
and u(n) represents all of the dependent variables 
and all partial derivatives up to the nth order. This 
mechanism is used to formally handle derivatives 
when dealing with the action of transformation 
groups. The additional coordinates provide a 
richer description. They also expand the 
dimensions of the space that applies to the 
particular problem being addressed, allowing 
more invariants to be generated. Applying the 
group action to jet space is called prolonging it 
into jet space. 
 The new example used in this section, with 

1−=k , will require two derivative terms in the jet 
space to achieve 1=k  and thus to allow 
generating one invariant. This jet space is given by 

( ) ( )xxx yyyxJ ,,,2 =  ,            (3.14) 

where yx denotes the first derivative of y with 
respect to x and yxx denotes the second derivative 
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of y with respect to x. After prolonging the group 
action into this jet space, the resulting transformed 
coordinates for a parameterized curve, z(t) = (x(t), 
y(t)) are given by (3.12) and 

 
θθ
θθ

sincos

cossin

tt

tt
x yx

yx

xd

dt

dt

yd
y

−
+

==  

 
( )3sincos θθ tt

tttttt
xx

yx

yxyx

xd

yd

xd

d
y

−
+

==  (3.15) 

These four formulas are the wi’s for this example. 
Adding more terms to the jet space would allow 
the generation of more invariants. 
 To derive the moving frame for this 
example, a canonical set, K must be defined and 
the normalization equations arising from K solved 
for the parameters of the moving frame. A suitable 
K is  

 01 == xw ,    02 == yw ,   03 == tyw   

         (3.16) 
Solving for θ, a and b yields the moving frame 

 







= −

t

t

x

y1tanθ  

 
22
tt

tt

yx

yyxx
a

+

+
= ,   

22
tt

tt

yx

yxxy
b

+

+
=       (3.17) 

Substitution of this moving frame into the formula 

for xxy  (3.15) gives the invariant 

 ( ) κ=
+

+
=

2/322
)(

tt

tttttt

yx

yxyx
zI           (3.18) 

which is the curvature. 
 The derivative jet space provides the 
needed dimensionality for applying the moving 
frame method and generating invariants. 
However, the reliance on higher order derivatives 
makes the resulting invariants sensitive to noise. 
A different approach that addresses this noise 
sensitivity uses potentials, which are based on 
integrals instead of derivatives, to define the jet 
space. This eliminates the high order derivatives 
and hence the noise sensitivity problem. 
 The integral potential jet space, Jp

n, is 
defined as a Euclidean space with coordinates 
 (x, y, x0, y0, V(n) ) ,             (3.19) 

where (x0, y0) is the initial conditions and V(n) is a 
set of potentials, defined as a potential Vi,j of order 
k, where 
 jiji

x yxV =,             (3.20) 

with j ≠ 0 and k = i + j. Thus, for z = V0,1, the 
potential is  

 ∫=
x

x
ydxz

0

            (3.21) 

 (see [19] for details). The method of moving 
frames can also be applied to this type of jet space 
to derive geometric invariants. 

Another approach, summation invariants, 
utilizes the moving frame method with a jet space, 
Jn, defined as a Euclidean space with coordinates 
 (x[1], y[1], x[N], y[N], P (n) ) ,        (3.22) 
for the case of a curve, where P(n) is all potentials 
up to and including the nth order and x[k], y[k]  are 
points on the curve parameterized by k, and 1 ≤ k 
≤ N.   For a parameterized 3D surface in 3ℜ , the 
corresponding jet space is given by: 

[ ] [ ] [ ] [ ] [ ],1,,1,,1,1,1,1,1,1( MyMxzyxJ n =  

           [ ] [ ] [ ] [ ] ( ) ),,1,,1,,1,1, nQNzNyNxMz
                     (3.23) 
where Q(n) is all potentials up to and including the 
nth order. This jet space definition based on 
summations also avoids high order derivatives and 
noise sensitivity. Its advantage over the integral-
based potentials is that it deals directly with 
discrete data, whereas for the integral approach, 
the discrete (sampled) data is an approximation to 
the actual data (continuous) and the accuracy will 
be dependent on the sampling rate. 
 
3.3 A systematic procedure for deriving 
summation invariants based on Cartan’s 
Method of Moving Frames 

 
To find summation invariants under a 
transformation group, G, it is necessary to find an 
appropriate canonical set, which leads directly to a 
set of normalization equations. Solving these 
equations for the transformation variables gives a 
moving frame. Invariant functions are found by 



University of Wisconsin – Madison  Technical Report ECE-07-05 
 

 8 of 30 9/24/2007 
  

applying this moving frame to the higher order 
potentials not used in deriving the moving frame.  

A procedure for deriving new families of 
summation invariants is outlined below and a 
detailed example derivation using this procedure 
is given in the next section: 

 
1. Define the kind of transformation group 

(e.g., Euclidean, affine, etc.) and mode 
(e.g., 2D, 3D). 

 
2. Determine the equations for the 

transformed variables and potentials. 
 

3. Define the canonical set. 
 
4. Define the normalization equation from 

the canonical set. 
 
5. Find the moving frame from the 

normalization equation. (Solve the set of 
equations defined by the normalization 
equation to get the transformation 
variables. May need to use a math solver 
program, like Maple®.) 

 
6. Apply the moving frame to higher order 

potentials to get the invariants. (i.e., 
potentials that were not part of the 
normalization equation.) 

 
7. Verify that they are actually invariant. 

Since the theory guarantees invariance, 
this step is a sanity check to make sure 
no errors were made in the derivation 
process. 

 
(Note: It may be necessary to try a different 
normalization equation if the one selected is 
not solvable or is too complicated to be 
practical.) 
 

 The naming convention used in most of 
the previous works [1-7] can be modified 
slightly to include more information about the 

invariants. This modified convention is 
formalized below: 
 
 E

1,1η   , where  

 
1. The variable name indicates mode (e.g., 
η=2D, κ=3D). 

2. The superscript indicates transformation 
group (e.g., E=Euclidean, A=affine, 
S=similarity, P=projective, Pp=planar-
projective). 

3. The subscripts indicate the potential it 
was derived from (e.g., ‘1,1’=P1,1, 
‘2,0’=P2,0). 

4. The normalization equation used in the 
derivation will need to be stated 
elsewhere, as it would be too 
cumbersome to include in the naming 
convention. 

 
3.4. Example derivation 
 
An example of deriving a new family of 
summation invariants using the procedure given 
above follows. The mode used is 2D, the 
transformation group selected is Euclidean and the 
normalization equation is (x[1], y[1], x[N] ) = (0, 
0, 0,). 
 The original work for the 2D Euclidean 
transformation group only used the numerator of 
the resulting formulas in the experimentation and 
for reporting the formulas, since the numerator 
and denominator were shown to be relatively 
invariant. A relative invariant is invariant to the 
group transformation up to a factor that is a 
function only of the transformation parameters, 
not the object points, i.e., I(g◦u) = f(g)I(u). When 
classification is performed using a measure such 
as normalized cross-correlation, the factors will 
cancel. This practice will be used here as well. 
 
Euclidean transformation (2D): 
 

( ) ( )
( ) ( ) 








+















 −
=









b

a

y

x

y

x

θθ
θθ

cossin

sincos       (3.24) 
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Transformed potentials: 
   

[ ]∑
=

=
N

n

nxP
1

0,1  ,  [ ]∑
=

=
N

n

nyP
1

1,0            (3.25) 

 
Apply Euclidean transformation:  
 

[ ]∑
=

=
N

n

nxP
1

0,1 [ ] ( ) [ ] ( )( )∑
=

+⋅−⋅=
N

n

anynx
1

sincos θθ  

( ) ( )1,0 0,1cos sinP P aNθ θ= ⋅ − ⋅ +          (3.26) 

 

[ ]∑
=

=
N

n

nyP
1

1,0 [ ] ( ) [ ] ( )( )∑
=

+⋅+⋅=
N

n

bnynx
1

cossin θθ  

( ) ( )1,0 0,1sin cosP P bNθ θ= ⋅ + ⋅ +          (3.27) 

 

Similarly, for  [ ]∑
=

=
N

n

nxP
1

2
0,2  , [ ] [ ]∑

=
=

N

n

nynxP
1

1,1  , 

and [ ]∑
=

=
N

n

nyP
1

2
2,0 , after transformation: 

 

[ ] [ ] [ ][ ]
2

11

2
0,2 sincos∑∑

==

+⋅−⋅==
N

n

N

n

anynxnxP θθ  

θθθθ cossin2sincos 1,1
2

2,0
2

0,2 ⋅⋅⋅−⋅+⋅= PPP
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Canonical Set/Normalization equation: 

 

[ ] [ ] [ ]( ) ( )1 , 1 , 0 , 0 , 0x y x N =       (3.31) 

   

(Note: instead of [ ]nx , could have used [ ]ny  , 

0,1P , 1,0P  , etc.) Then solve for the moving frame 
{ θ, a, b} based on the normalization equation (use 
Maple, Mathematica® or similar)(See results in 
Appendix B) 
 

Apply the moving frame (i.e., values of θ, 
a, b obtained above) to potentials not used in the 
normalization equation to get summation 
invariants using Maple, Mathematica or similar 
symbolic mathematical packages.  
  Verify the invariance of the derived 
formulas by applying them to curves that have 
been subjected to the transformation, e.g., define a 
curve and several Euclidean transformations of it 
and compute the new summation invariant for 
each transformed curve – they should all be the 
same. (Use Matlab®, or similar.) 

The Matlab code to implement this 
verification is shown in Appendix C. It first 
computes the values for the original curve with 
the denominator term, then computes them for ten 
random transformations (0≤θ≤2π, 0≤a,b≤100) 
without the denominator term. (Note: the original 
work left out the denominator term, so the 
experimentation was done without it for the new 
invariants to get an equal comparison.) The results 
of this test for two random transformations are 
shown below, where Hx corresponds to η1,0, Hy 
corresponds to η0,1, etc.: 
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run ck_krw1_curve_Eu_sum_inv 
% krw1_curve_Eu_sum_inv_denom 
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35, 
0.65619, 3.0666, 23.7209) 
% krw1_curve_Eu_sum_inv 
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35, 
0.65619, 3.0666, 23.7209) 
(Hx, Hy, Hxx, Hxy, Hyy) = (-6.1331, -35, 
0.65619, 3.0666, 23.7209) 

The data confirms that the new summation 
invariants are indeed invariant to Euclidean 
transformations. Also, the denominator term had 
no effect on the values of the summation 
invariants. 
 

A list of the summation invariants derived 
thus far is given in table 1, along with where each 
has been published. Detailed formulas for each are 
listed in Appendix A. Each invariant family is 
specified by mode, transformation group and 
normalization equation.  

 
 

4. IMPLEMENTATION CONSIDERATIONS 
 
In applications to pattern classification, an 
invariant feature is computed from a given object 
(curve or surface) which may be subject to 
geometric transformations such as translation, or 
rotation. Being an invariant feature, its value 
should remain the same before and after the rigid 
object is subject to the geometric transformation. 
As such, one may evaluate the invariant feature 
based on the transformed coordinates 

[ ] [ ]( )x n y n  without knowing the parameters, 

e.g.  θ, a, or b, nor the original coordinates (x[n]  
y[n]).   
 

In practice, there may be factors which 
adversely affect the invariance of such a feature. 
This section examines several such factors and 
their affects. The factors examined here include 
correspondence, spatial quantization after 
geometric transformation, occlusion, finite 
precision arithmetic and geometric scaling. Other 
implementation considerations that contribute to 
the effectiveness of the invariants for object 

Table 1. List of Summation Invariants derived so far. 

Mode Transform Normalization Equation Invariants Derived1,2,3 Published Data set 
2D Euclidean (x1,y1,yN) = (0,0,0) EEEEE

0,10,10,10,10,1 ,,,, ηηηηη  1) [3] 
2) [4] 
3) [5]  
4) [6]                                
5) [7] 

1) FRGC 1.0 
2) FRGC 1.0  
3) FRGC 1.0  
4) FRGC 1.0/2.0  
5) FRGC 2.0 

2D Affine (x1, y1, xN, yN, P10, P01) = 
(0, 0, 1, 1, 0, 0) 

A
0,2η  

1) [1] 
2)  [6] 

SQUID 
 

2D Euclidean (x1,y1,xN) = (0,0,0) EEEEE
0,10,10,10,10,1 ,,,, ηηηηη   FRGC 2.0 

3D Euclidean (x11, y11, z11, yM1, zM1, 
z1N,) = (0,0,0,0,0,0) 

EEE
0,0,10,1,01,0,0 ,, κκκ  

 

1) [3] 
2) [5]  
3) [6] 

FRGC 1.0 
 

   EEE
1,1,01,0,10,1,1 ,, κκκ   FRGC 2. 

3D Affine (x11, y11, z11, xM1, yM1, 
zM1, x1N, y1N, z1N, P100, 
P010, P001) = (0, 0, 0, 1, 0, 
0, 0, 1, 0, 0, 0, 0) 

A
0,0,2κ  

1) [2] 

2) [6] 

 
1) 3D cafe face 
 

1. The variable name indicates mode (e.g., η=2D, κ=3D). 
2. The superscript indicates transform group (e.g., E=Euclidean, A=affine, S=similarity, P=projective). 
3. The subscripts indicate the potential it was derived from (e.g., ‘1,1’=P1,1, ‘2,0’=P2,0). 
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recognition will also be examined, including 
feature dimensionality, non-rigid geometric 
transformations and fusion of results from 
multiple regions. 
 
4.1. Correspondence of Data Points, Spatial 
Quantization, Occlusion, Finite Precision 
Arithmetic and Geometric Scaling  
 
One issue that is prevalent in object recognition is 
that of correspondence, making sure that the same 
things are being compared. This issue is also 
important in the application of summation 
invariants. In [4, 5] optimizing the alignment of 
the region used for face recognition resulted in 
improved performance. This optimization was 
implemented by taking the mean of the 
summation invariant images computed from the 
training images and using the sum of squared 
differences (SSD) measure to find the closest 
match for each new image compared to the mean 
training image. When applying summation 
invariants, better results are obtained if measures 
are taken to insure good correspondence between 
objects. 

In practical applications, the geometric 
transformation of an object in an image is not the 
result of a manipulation of the original data points, 
but from a manipulation of the object or the 
camera, resulting in a new image of the 
transformed object. In general, this results in a 
different set of sampled data points than those 
obtained by just transforming the original data set 
due to the quantization effects of the camera. The 
new image of the transformed object will contain 
points sampled from slightly different locations on 
the object than in the original image. This spatial 
quantization after geometric transformation may 
result in not only the data points being different, 
but also a different number of data points for a 
given region. Both of these changes will adversely 
affect the invariance of the summation invariant. 
One way to alleviate this problem is to re-sample 
the transformed curve or surface in the parameter 
space rather than the spatial coordinates. One 

example of this is re-sampling a curve with points 
located at equal arc-length points along the curve. 
This issue will be examined more fully in the next 
section.  

Occlusion of all or portions of an object in 
an image can occur in several ways. Sometimes a 
3D surface is imaged digitally using a range image 
map, which corresponds to a projection of the 
surface in a particular direction. When the object 
undergoes a geometric transformation (e.g., 
rotation), the image of the transformed object may 
have portions of the object that were visible in the 
original image now occluded by other parts of the 
object. Extensive translation may also render 
some, or all, of the transformed object outside the 
viewing window. Both of these situations may 
lead to inaccurate values of invariant features, or 
even render the calculation impossible. To address 
this concern, the ranges of allowable geometric 
transformation have to be restricted to prevent this 
from occurring, or measures such as using semi-
local features (to be discussed in the next sub-
section) need to be used. This situation also 
requires that the correspondence of the data points 
for invariant feature calculation must be 
accurately established.  

Another factor that may affect invariance 
is numerical issues due to finite precision 
arithmetic, such as rounding errors. The original 
works on summation invariants applied to face 
recognition [4-7] utilized double precision 
floating-point numbers in the calculations. As 
long as there is no division operation, the 
numerical rounding error accumulation should be 
of little concern.  

Geometric scaling will also affect the 
values of summation invariants. This factor arises 
from images taken at different distances from the 
object or from images taken at different 
resolutions. Either case will result in sample 
points at different locations and a different density 
of sample points. The summation invariant will 
produce different values under these conditions 
for the same object. To reduce this affect, re-
sampling of the object images can be done to give 



University of Wisconsin – Madison  Technical Report ECE-07-05 
 

 12 of 30 9/24/2007 
  

all instances of the object the same density of data 
points. The wide range of possible variations 
makes it difficult to quantify this affect in general. 

Another issue that may arise involves the 
scaling of the images. The summation invariants 
derived under Euclidean transformations are not 
invariant to scaling, so if the images to be 
compared are of different scales, or if the original 
scale information is lost, then it will be necessary 
to normalize the images to the proper scale to get 
the best results [4, 5]. This may require re-
sampling.  
 
 
 
4.2. Feature Dimension, Non-Rigid Geometric 
Transformations and Fusion 

 
The original definition of summation invariants 
produces a single value for an image/object. The 
extension to ‘semi-local’ summation invariants [1] 
increased the size of the feature space to provide 
better discrimination capabilities. However, this 
requires specifying a window size for the local 
computation. Optimizing this window size will 
further improve performance. This technique is 
also useful for dealing with occlusions, since it 
makes the feature more local in nature and allows 
comparisons of partial objects (assuming the 
correspondence is known). 

Another factor is non-rigid geometric 
transformations, which are caused by 
deformations of the object being imaged. One 
example of this factor is the variation caused by 
changes in expression on human faces. These 
transformations will obviously affect the 
invariance of any summation invariant derived 
under transformation groups, such as Euclidean, 
that don’t include non-rigid transformations. 
Invariants derived under affine or projective 
groups would be expected to have a better chance 
of retaining their invariance.  

One way to alleviate this problem is to 
compute invariant features on a local or semi-local 
basis over a smaller region of the entire object. 

The intuition is that the non-rigidness effect will 
be less prominent over a small region of a large 
object. As such, the rigid transformation 
assumption would be more likely applicable in 
such a situation. On the other hand, to compute 
summation invariant over smaller regions would 
require better correspondence between the original 
and transformed data points. In face recognition 
applications, improvement was achieved by 
carefully selecting sub-regions that were more 
invariant to expression changes, like the nose 
region [4, 5]. The invariants were then computed 
on the sub-region(s) instead of on the whole 
image. 

Finally, using either multiple sub-regions 
or multiple invariants and some method of fusion 
to obtain the final result was shown useful in 
improving the performance of the summation 
invariants [5, 7] in face recognition. 
 
 

5. SIMULATIONS 
 

The issue of spatial quantization after geometric 
transformation will be examined more closely 
here with simulations to illustrate the issues 
involved. An example curve is shown in figure 1 
along with the curve resulting from a 36˚ rotation 
and translation of the original curve (o’s). The 
curve labeled ‘camera quantization’ (x’s) is  
produced by re-sampling the transformed curve on 
the same grid spacing that the original curve had, 
simulating the image of the rotated curve obtained 
by a camera.  

This ‘camera’ is a 1D camera that 
produces an image that is a line, where the x-value 
is the position along the line and the y-value is the 
distance of the object from the camera at that x-
value. The camera samples the object at regular 
intervals, producing a quantization of the object 
curve. When the object rotates, it is readily 
apparent that the image of the object changes in 
several ways. First, the rotated image is longer in 
this example than the original. This affect is 
caused by the projection of the object onto the x-
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axis (the camera image ‘plane’) being a different 
size. This gives the quantized curve more data 
points, 14 instead of 11, than the original. This 
difference will increase the error in the values of 
summation invariants for this curve. Although it is 
likely that the transformed image will have a 
different number of points, it is not guaranteed to 
be the case in general. 

Another difference in the rotated image is 
that the points on the curve where the image 
samples are located changes. The increase in 
number of points obviously means that the points 
are from different locations on the object, but even 
if the total number of points was the same after 
transformation, the points could still come from 
slightly different locations. For example, on the 
right half of the original curve, the camera sees a 
relatively steep slope on the object, resulting in 
relatively few points for that portion, while the left 
part has a gentler slope, resulting in relatively 
more points. After transformation, the situation is 
reversed – the right part now has a gentler slope 
and hence relatively more points while the left 
part has a steeper slope, with fewer points than 

before. While this example has more total points, 
it is possible to have a case like this that would 
have the same number of points.  

This effect of a change in slope of the 
curve after transformation on the location of the 
sample points in the image of the curve is clearly 
seen on the left-most portion of the curve. The 
first camera point is located between the first and 
second transformed points and the next camera 
point is between the third and fourth transformed 
points. These changes in location of the data 
points on the curve will change the calculated 
values of the summation invariants. 
 

Finally, after transformation and 
quantization, the end points may not be the exact 
same points due to the actual end points lying 
between the points of the quantization interval. 
This can be seen on the left side of the 
transformed curve where the two end points 
(original transformed and camera quantized) are 
different because the transformed end point falls 
between the quantization interval points. 
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Figure 1 – Quantization effect after transformation. 
 



University of Wisconsin – Madison  Technical Report ECE-07-05 
 

 14 of 30 9/24/2007 
  

 
One technique that will reduce the error 

caused by these quantization effects is arc-length 
re-sampling. This is a parameterization of the 
curve by arc-length and then re-sampling in the 
parameterized domain. The original curve is re-
sampled at points that are equidistant along the 
curve. When a new image (of the object 
transformed) is obtained, it is also re-sampled at 
equidistant points along the curve, using the same 
number of samples as the arc-length re-sampled 
original. This technique is illustrated in figure 2 
using the same curves as in figure 1. The original 
curve is indicated by the piecewise linear curve 
and the equal arc-length re-sampled points are 
shown as x’s. The transformed, quantized points 
are indicated by a piecewise linear curve and the 
original points transformed, quantized and equal 
arc-length re-sampled are shown by o’s, while the 

original arc-length re-sampled points after 
transformation are shown as x’s. The data points 
using this method are clearly more accurate than 
the results without it in figure 1.   This method 
will cancel the effects noted above where the 
number of sample points from a given portion of 
the curve varies with transformation. The error 
can be reduced, but not eliminated by this 
technique since the end points may be at slightly 
different locations on the curve, which will affect 
all of the other re-sampled values. This is the case 
in the example of figure 2. 

The example curve of figure 1 was 
transformed over rotation values ranging between 
zero and 36˚ (with 51 samples instead of 11 for 
improved performance). At each angle of rotation, 
the Euclidean summation invariants derived here 
were calculated for the transformed curve with 
camera quantization and the transformed, camera 
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Figure 2 – Arc-length re-sampling and quantization effect after transformation. 
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quantized with arc-length re-sampling curve. 
These values were compared to the Euclidean 
summation invariants calculated on the original 
curve points and to the original curve points after 
arc-length re-sampling, respectively.  As expected, 
the two curves displayed errors in the calculations. 
The errors are shown in table 2. The camera re-
sampled curve had the worst errors, with values 
ranging as high as 76%. The arc-length re-
sampled curve had better results, with values 
ranging only as high as 27% and with two of the 
invariants (η0,1 and η0,2) having errors over the 
given rotation range of magnitude less than 3% 
and 6%. The arc-length re-sample technique 
provides better results than using the raw camera 
image. In addition, within a family of summation 
invariants, some features show less susceptibility 
to the quantization effects. 
 

6.  PERFORMANCE COMPARISONS 
 
Invariance does not guarantee distinctiveness, so 
the discrimination ability of summation invariants 
must be evaluated experimentally. The previous 
works did not use a consistent set of experiments, 
so a fair comparison of the discrimination 
performance of the summation invariants cannot 
be made using the previously published results. A 

proposal for a standard experiment to use for 
comparison purposes is given here.  
 
6.1. Standard experiment 
 

The application used to make this assessment 
is face recognition. The original work on 
summation invariants utilized the Face 
Recognition Grand Challenge (FRGC) database 
[24]. Most of the early work used version 1.0. 
Version 2.0 is more extensive in size and includes 
variation in expression, and is used in the standard 
experiment.  

The FRGC was designed to provide the 
incentive and means to achieve a significant 
advance in the state-of-the-art in face recognition 
[24]. It consists of an extensive database of 50,000 
face images, a set of six challenge experiments 
and a standardized experimental against the False 
Acceptance Rate (FAR). The standard comparison 
value is the TAR at a FAR of 0.001 (0.1%).  

The experiment consists roughly of the 
following steps: The raw images are normalized to 
get them in a consistent pose and size, and are 
cropped to a roughly elliptical shape (see figure 3, 
also figure 4 where the image is rotated to more 
easily see the features). The comparison algorithm 
is then executed which calculates the features for 

Table 2 – Quantization errors after transformation – with and without arc-length re-sampling. 
 
Original, then camera quantization - error (%)  (camera quant. Vs. original)
Theta, degrees 3.6 7.2 10.8 14.4 18 21.6 25.2 28.8 32.4 36 Max Min
Hx -6.61 2.22 12.48 6.42 13.45 7.40 17.59 6.78 23.49 12.71 23.49 2.22
Hy 1.71 13.86 27.27 31.80 39.58 45.64 55.68 55.25 68.08 68.85 68.85 13.86
Hxx -14.60 -3.32 10.97 -2.42 7.19 -5.50 9.72 -9.57 17.33 -2.28 17.33 -9.57
Hxy -7.26 6.14 22.35 17.48 27.27 23.45 38.68 25.83 50.83 38.59 50.83 6.14
Hyy -2.72 12.23 29.83 33.15 41.45 48.36 61.31 57.68 75.99 75.31 75.99 12.23

Original , transform, then Camera quantized and arc-length resample vs. original and arc-length - error (%)
Theta, degrees 3.6 7.2 10.8 14.4 18 21.6 25.2 28.8 32.4 36 Max Min
Hx -8.16 -5.16 -1.27 -7.79 -5.21 -11.26 -6.25 -14.39 -4.68 -12.47 -1.27 -14.39
Hy -4.54 -2.72 -0.43 -1.12 -1.79 -0.76 -0.22 -1.47 -0.23 -0.18 -0.18 -2.72
Hxx -15.86 -10.19 -2.56 -15.21 -10.30 -21.58 -12.31 -27.10 -9.28 -23.74 -2.56 -27.10
Hxy -11.96 -7.51 -1.65 -8.69 -6.74 -11.79 -6.40 -15.42 -4.84 -12.49 -1.65 -15.42
Hyy -9.59 -5.86 -1.00 -3.28 -4.13 -3.13 -1.36 -4.91 -1.13 -2.24 -1.00 -5.86  
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each of the normalized face images. The training 
set is used to train the classifier, which is then 
used to make a decision on each face in the 
validation set. This comparison is done for each 
image against all others, yielding a 4007x4007 
similarity matrix containing values for the relative 
similarity of each face with each of the others.  

The experimental framework used in the 
FRGC is the Biometric Experimentation 
Environment (BEE). It uses various scripts and 
programs (Java, XML, Perl, C) to define and run 
the experiments. The FRGC specifies a baseline 
implementation for each experiment that 
researchers can modify to implement their own 
methods. The baseline uses Principal Component 
Analysis (PCA) to derive the features for 

comparison between images. The experimental 
framework and well-defined experiments provide 
a mechanism for easy and fair comparison of 
results from different researchers. The size of the 
database facilitates obtaining statistically 
meaningful results. 

The experiment used here is experiment 3s, 
which uses 3D shape images. This portion of the 
database contains 943 training images and 4007 
validation images. The images were taken over the 
course of two academic years. The 3D images 
were taken under controlled lighting conditions 
with a Minolta Vivid 900/910 series sensor. The 
resulting images are 640x480 pixel range images. 
The variation due to illumination is eliminated for 
this type of image, but variation due to pose is still 

    
Figure 3 – Normalized face range    Figure 4 – Normalized face range image  
      image.       rotated. 

 

  

 

 
Figure 5 – Raw face range image from    Figure 6 – Region 5 from [7]. 

FRGC2.0 database. 
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an issue. A sample of one of the images is shown 
in figure 5 below (re-sampled on an equal grid and 
rotated for better visualization). 

Results for the experiments are reported via 
Receiver Operating Curve (ROC) graphs. There 
are three categories, I, II and III, corresponding to 
images taken in the same semester, within the 
same academic year, and within eighteen months 
of each other, respectively. These graphs plot the 
verification rate, or True Acceptance Rate (TAR), 
others. This data is used to generate the ROC 
graphs. A set of similarity mask matrices 
determines which values in the similarity matrix 
are valid for each ROC graph (I, II, III). 

The set of experiments run in this project 
utilize a sub-region of each face (region 5 as 
defined in [7]) that is 81x81 pixels (see figure 6). 
This sub-region was selected to reduce the degree 
of variation due to expression. The goal in this 
standard experiment is not to get the highest 
performance possible, but rather to make a relative 
comparison amongst the invariants. Therefore, 
additional techniques to get higher performance 
(like fusion of results from multiple regions) are 
not attempted in the standard experiment.  

Taken at face value, the summation invariant 
will produce a single value for each face image. 
This would be great for invariance, but poor for 
discrimination purposes. To enhance the 
discrimination capability, an extension to the 
summation invariant concept was developed, 
making it ‘semi-local’ [1]. This extension consists 
of calculating the summation invariant at each 
pixel over a window centered at that pixel. This 
results in an expansion of the feature space and an 
improvement in the discrimination capability of 
the summation invariant.  

The images are 3D surfaces, but some of the 
invariant features are defined for 2D data. This is 
handled by calculating the 2D feature over a 
horizontal 1xN sized window centered on the 
current pixel, then over a vertical Nx1 sized 
window centered on the current pixel. An 
additional processing step is the uniform re-
sampling with respect to arc-length in the 

calculations done at each pixel. The window size 
used is 21. For 3D summation invariants, the 
window size is 17 and no arc-length re-sampling 
is performed. 

To minimize the computation burden of the 
similarity calculation, principal component 
analysis (PCA) is performed on the resulting 
feature space to reduce its size. The basis vectors 
for the PCA step are calculated from the training 
set of images. The similarity metric used is the 
Mahalanobis cosine. 

The calculation of the summation invariant 
features takes place in a C routine in the file 
‘uwCommonInvariants.c’ that is part of the BEE 
setup. Implementing the new family of invariants 
requires modifying that file to include the new 
calculations as additional functions and then 
modifying the call to the invariant calculation 
function for each run so the appropriate invariant 
is used.  

Comparison of the results is done using the 
TAR value at a FAR of 0.001 for ROC-III. A 
broader comparison can also be done using the 
full ROC graphs for ROC-III, or using ROC-II or 
ROC-I.  
 
6.2. Results 
 
The summation invariants derived so far (listed in 
table 1) were each used as the feature for the 
experiment outlined above. The results from those 
experiments are summarized in Table 3 below. 
The results shown are for ROC-III. The ROC 
graphs for each set are shown in figures 7 - 11. 

The results for the new family of invariants 
derived here are very similar to those for the 
original (e.g., the values for η1,1 match, the 
original, η1,0 matches the new η0,1, etc.). The only 
one that doesn’t follow the pattern is the new η0,2 , 
which is much lower than expected. The results 
for the 2D affine η0,2 are similar. 

The results for 3D Euclidean are worse than 
those for the 2D invariants. One factor that could 
account for this is the fact that the 2D invariant 
calculation results in two values for each point
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Figure 7 – ROC III graph for 2D Euclidean      Figure 8 – ROC III graph for 2D Euclidean  
summation invariants with y(N) = 0.   summation invariants with x(N) = 0. 
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Figure 9 – ROC III graph for 2D affine   Figure 10 – ROC III graph for 3D Euclidean  

summation invariants.    summation invariants. 
 

Table 3: Results – Comparison of discrimination capabilities for all summation invariants using face 
recognition application. 

 

 η10 η01 η20 η11 η02  
2D, Eucl., yN=0 0.5772 0.6821 0.5810 0.7192 0.6811  
2D, Eucl., xN=0 0.6930 0.5772 0.6812 0.7192 0.4081  
2D, Affine   0.6842    
 K001 K010 K100 K110 K101 K011 
3D, Eucl. 0.4370 0.3746 0.3779 0.4927 0.4749 0.4058 

 K200, numer K200,denom     
3D, Affine 0.1548 0.2516     
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 (one horizontal window and one vertical window) 
but the 3D invariant calculation only provides one 
value for each point. Another possible reason is 
the use of arc-length re-sampling for the 2D 
invariants, but none for the 3D case. The 3D 
affine invariant performed worse than the 3D 
Euclidean. The numerator and denominator of the 
3D affine summation invariant were shown to be 
relative invariants, so experiments were also run 
using each of those. No explanation is known at 
this time for the dismal performance of the full 
invariant compared to the numerator and 
denominator performance.  
 
 

7. CONCLUSIONS 
 
The method of moving frames, a powerful tool for 
deriving geometric invariant features, was 
described. The summation invariant, a recently 
developed geometric invariant with a 
demonstrated effectiveness in pattern 
classification applications, was discussed in the 
context of some of the other major geometric 
invariant features. In their semi-local form, these 
features have good discrimination capability, but 
without the noise sensitivity of the classical 
differential-based invariants. The summation 
invariants derived so far were summarized and a 
systematic approach for deriving new features 
using the method of moving frames was outlined. 
A detailed example derivation was given to 
illustrate the derivation procedure and a naming 
convention was proposed. Implementation issues 
were examined, including techniques for 
enhancing their effectiveness and factors that 
reduce their effectiveness in practical imaging 
applications. A standard method for comparing 
the discrimination ability of the different 
summation invariants was given using face 
recognition as the application.  
 Further work needs to be done to compare 
summation invariants with other invariant features 
to determine what tasks each is best suited for. 
Another area in need of additional exploration is 

the effects of re-sampling on the calculation of 
other invariants. 
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Figure 11 – ROC III graph for 3D affine  

summation invariants. 
 



University of Wisconsin – Madison  Technical Report ECE-07-05 
 

 22 of 30 9/24/2007 
  

Appendix A 
 
Table of Summation Invariant formulas 
 
Euclidean, 2D, (x1,y1,yN) = (0,0,0) 

               [ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )NyxyNNxxxNyNyPxNxPPE −⋅⋅+−⋅⋅+−⋅+−⋅== 111111 1,00,10,10,1η  

           [ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ] [ ]( )NyxyNxNNxxPyNyPPE ⋅−⋅⋅+−⋅+−⋅== 1111 1,00,11,01,0η  

[ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]( )( )22
0,10,20,2 111112 yNyyxNxxNxxPPE +⋅−⋅−−⋅⋅−==η    

[ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]( )( )22
1,0 111112 xxNxNyyyNyyP +⋅−⋅−−⋅⋅−  

   [ ] [ ]( ) [ ] [ ]( )2
2,0

2
0,2 11 NyyPNxxP −⋅+−+  

                                [ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ]( )( ) [ ] [ ] [ ]( )( )( )2
1,1 1111112 NyyyNxxxNNxxNyyP −+−⋅+−⋅−⋅⋅+  

            [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1112121( 223
0,11,11,1 yxxNyNyNxxyPPE ⋅+⋅⋅−⋅⋅⋅+==η        

                                          [ ] [ ] [ ] [ ] [ ] [ ])1112 222 yNxyNyNyy ⋅−⋅+⋅⋅−    

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1112121( 223
1,0 xyyNxNxNyyxP ⋅+⋅⋅−⋅⋅⋅++    

[ ] [ ] [ ] [ ] [ ] [ ])1112 222 xNyxNxNxx ⋅−⋅+⋅⋅−   

       ( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )( )22
1,10,22,0 1111 NyyNxxPNxxNyyPP −−−⋅+−−−+   

       [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )( )111111 yNyyxNxxNyxyNxN −⋅+−⋅⋅−⋅⋅+     

[ ] [ ] [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )( )11112 1,00,12,02,0 xNxPyNyPNyxNxyPE −⋅−−⋅⋅⋅−⋅⋅==η  

[ ] [ ]( ) [ ] [ ]( )2
2,0

2
0,2 11 NxxPNyyP −⋅+−⋅+  

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ] [ ]( )2
1,1 11112 yNxNyxNNyyNxxP ⋅−⋅⋅+−−⋅⋅−  

Euclidean, 2D, (x1,y1,xN) = (0,0,0) 

                [ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ] [ ]( )1111 1,00,10,10,1 yNxNyxNxNxPNyyPPE ⋅−⋅⋅+−⋅+−⋅==η  

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )111111 1,00,11,01,0 yNyyNxNxxNNyyPNxxPPE −⋅⋅+−⋅⋅+−⋅+−⋅==η  

[ ] [ ]( ) [ ] [ ] [ ] [ ]( )( )NxyxNyNyyPPE ⋅−⋅−⋅⋅== 1112 0,10,20,2η    

[ ] [ ]( ) [ ] [ ] [ ] [ ]( )( )1112 1,0 xNyNxyNxxP ⋅−⋅−⋅⋅+  

  [ ] [ ]( ) [ ] [ ]( )2
2,0

2
0,2 11 NxxPNyyP −⋅+−+  

  [ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ] [ ]( )2
1,1 11112 xNyNxyNxNxNyyP ⋅−⋅⋅+−⋅−⋅⋅+  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )NyyyxNyNxyPPE ⋅⋅+−−−== 12111( 2222
0,11,11,1η     

[ ] [ ] [ ] [ ]( ))112 NxxNyx −⋅⋅⋅+  

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )NxxNxNyxyxP ⋅⋅−+−++ 12111( 2222
1,0    

[ ] [ ] [ ] [ ]( ))112 yNyNxy −⋅⋅⋅+   

       ( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )( )22
1,12,00,2 1111 xNxyNyPNxxNyyPP −−−⋅+−−−+   

       [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]( )11111( 22 xNxNyxNxxyNxyN −⋅⋅+−⋅⋅⋅+     

    [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]( ))11111 22 xNxNyyNxxNyyx +⋅⋅−⋅+⋅⋅+  
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[ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]( )( )111112 2
0,12,02,0 xNxxNyyyxNxPPE −−⋅−−⋅⋅==η  

[ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]( )( )111112 2
1,0 yNyyNxxxyNyP −−⋅−−⋅⋅+  

[ ] [ ]( ) [ ] [ ]( )2
2,0

2
0,2 11 yNyPxNxP −⋅+−⋅+  

[ ] [ ]( ) [ ] [ ]( )NxxNyyP −−⋅⋅+ 112 1,1  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1121121( 22222 xyxNyyNxxN ⋅⋅+⋅⋅⋅−⋅⋅+    

       [ ] [ ] [ ] [ ] [ ] [ ] [ ]NxxyNxxNyy ⋅⋅⋅−⋅⋅⋅⋅+ 112112 2  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ])1211112 344223 NyyxyNyyNxx ⋅⋅−++⋅+⋅⋅−  
Affine, 2D, (x1,y1, xN, yN, P10, P01) = (0,0,1,1,0,0) 
    (Note : both the numerator and denominator are relative invariants.) 

               [ ]( ) [ ]( )2
0,12,0

2
1,00,20,2 11{ PxNPPyNPA −⋅⋅+−⋅⋅=η  

                              [ ]( ) [ ]( ) [ ] [ ]( ) }11112 2
1,00,11,00,11,1 PxPyNPyNPxNP ⋅−⋅⋅−−⋅⋅−⋅⋅⋅−  

                              [ ] [ ] [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )( ){ }2
1,00,1 1111/ xNxPyNyPNyxyNxN −⋅−−⋅+⋅−⋅⋅  

Euclidean, 3D, (x11,y11,z11, yM1, zM1, z1N) = (0,0,0,0,0,0) 




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323  ,  where   

[ ]
[ ]
[ ]













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=
1,1

1,1

1,1

z

y

x

T  ,  then let  

[ ]
[ ]
[ ]
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













=
1,

1,

1,

Mz
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Mx

A   and express A in spherical coordinates 

 

(ra, θa, φa) , then  






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


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100

0cossin
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
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12   ,  and define  
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

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


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
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x

z

y

B

B

B

C   , then express C in spherical coordinates (rc, θc, φc),  

 

and let  










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





−
=

cc

ccR

φφ
φφ

cossin0

sincos0

001

3  . Then R1, R2, R3 and T form a moving frame – apply to potentials to get invariants 

as 
 
 shown below. 
 

          ∑
=

=
N

n

E x
1

0,0,1κ   ,  where x  is calculated by the transformation given above. 

         ∑
=

=
N

n

E y
1

0,1,0κ   ,  where y  is calculated by the transformation given above. 

         ∑
=

=
N

n

E z
1

1,0,0κ   ,  where z  is calculated by the transformation given above. 
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Affine, 3D, (x11,y11,z11,xM1, yM1, zM1, x1N, y1N, z1N,P100,P010,P001) = (0,0,0,1,0,0,0,1,0,0,0,0) 

        }))y-(y x )y-(y x )y-(y(xQ 

))z- (z x )z -(z x )z-(z(xQ 

))z-(zy  )z-(zy  )z-(z(yQ 

)))zy-z(y x )zy -z(y x )zy-z(y{(MN(x/

}))yx-y(xQ  )zx-z(xQ  )zy-z(yMN(Q-

))y-(yQ  )z-(zQ  )zy-z(MN(y

))x-(xQ  )y-(yQ  )yx-y(MN(x2Q-

))y-(yQ  )z-(zQ  )zy-z(MN(yQ 

))y-(yQ  )z-(zQ  )zy-z(MN(y

))x-(xQ  )z-(zQ  )z x-z(MN(x2Q-

))x-(xQ  )z-(zQ  )zx-z(MN(xQ 

))x-(xQ  )z-(zQ  )zx-z(MN(x

)) x-(xQ  )y -(yQ  )yx-y(MN(xQ2-

))x-(xQ  )y-(yQ  )y x-y(MN(x{Q 

2
001001010010100100001

100001000110011000010

001001010010100100100

001010000101000001101001011000

2
010000010010001010001001000001100

0001001010001000010100

0100010000110001000001101

2
0100001000101001000001200

0100001000101001000001

0100001000110001000001110

2
0100001000110001000001020

0100001000110001000001

0100010000110001000001011

2
01000100001100010000010,0,2

A
2,0,0

+++

+++
+++

++
++

++
++

+++

++
++
+++

++
++⋅

++=κ

 
 
where,   x00 = x[1, 1]; y00 = y[1, 1]; z00 = z[1, 1]; x10 = x[M, 1]; y10 = y[M, 1]; z10 =z[M, 1]; 
 x01 = x[1, N]; y01 = y[1, N]; z01 = z[1, N]. 
 
 
 



University of Wisconsin – Madison  Technical Report ECE-07-05 
 

 25 of 30 9/24/2007 
  

Appendix B 
 
Maple file – Derivation of moving frame and Summation Invariants 
 
> # 
# Curve Euclidean invariant eta_y 
# g o (x0,y0,x1) = (0,0,0) 
# 
eqn1:=cos(theta)*x0-sin(theta)*y0+a=0: 
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0: 
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0: 
solve({eqn1,eqn2,eqn3},{theta,a,b}): 
eval(sin(theta)*Px+cos(theta)*Py+b*N,%):simplify(%); 

K
1

(Ky1C y0)  
y02

K 2 y0 y1C y12
C x02

K 2 x0 x1C x12

(Ky1C y0)2

 

(KPx x0CPx x1CPy y1KPy y0
CN x02

KN x0 x1KN y0 y1CN y02)

 

> # 
# Curve Euclidean invariant eta_x 
# g o (x0,y0,x1) = (0,0,0) 
# 
eqn1:=cos(theta)*x0-sin(theta)*y0+a=0: 
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0: 
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0: 
solve({eqn1,eqn2,eqn3},{theta,a,b}): 
eval(cos(theta)*Px-sin(theta)*Py+a*N,%): 
simplify(%); 

K
Px y1KPx y0CPy x0KPy x1KN x0 y1CN y0 x1

(Ky1C y0)  
y02

K 2 y0 y1C y12
C x02

K 2 x0 x1C x12

(Ky1C y0)2

 

> # 
# Curve Euclidean invariant eta_xx 
# g o (x0,y0,x1) = (0,0,0) 
# 
eqn1:=cos(theta)*x0-sin(theta)*y0+a=0: 
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0: 
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0: 
solve({eqn1,eqn2,eqn3},{theta,a,b}): 
eval(Pxx*cos(theta)^2 + Pyy*sin(theta)^2 - 2*Pxy*cos(theta)*sin(theta) + 
2*a*(cos(theta)*Px - sin(theta)*Py) + a^2*N,%): 
simplify(%); 
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1

y02
K 2 y0 y1C y12

C x02
K 2 x0 x1C x12

 (K2 y02 Px x1

C y02 PxxC y02 N x12
C 2 y0 y1 Px x0C 2 y0 Pxy x1

C 2 x0 x1 Py y0K 2 y0 N y1 x0 x1
C 2 y0 y1 Px x1K 2 y0 Pxx y1K 2 y0 Pxy x0K 2 y0 x12 Py
CPyy x02

CPyy x12
K 2 Pyy x0 x1K 2 Pxy x1 y1

K 2 y12 Px x0CN y12 x02
K 2 x02 Py y1C 2 Pxy x0 y1

C 2 x0 x1 Py y1CPxx y12)

 

> simplify(numer(%)); 

K2 y02 Px x1C y02 PxxC y02 N x12
C 2 y0 y1 Px x0

C 2 y0 Pxy x1C 2 x0 x1 Py y0K 2 y0 N y1 x0 x1
C 2 y0 y1 Px x1K 2 y0 Pxx y1K 2 y0 Pxy x0K 2 y0 x12 Py
CPyy x02

CPyy x12
K 2 Pyy x0 x1K 2 Pxy x1 y1

K 2 y12 Px x0CN y12 x02
K 2 x02 Py y1C 2 Pxy x0 y1

C 2 x0 x1 Py y1CPxx y12

 

> # 
# Curve Euclidean invariant eta_xy 
# g o (x0,y0,x1) = (0,0,0) 
# 
eqn1:=cos(theta)*x0-sin(theta)*y0+a=0: 
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0: 
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0: 
solve({eqn1,eqn2,eqn3},{theta,a,b}): 
eval((Pxx - Pyy)*sin(theta)*cos(theta) + Pxy*(cos(theta)^2 - sin(theta)^2) + 
Px*(b*cos(theta) + a*sin(theta)) + Py*(a*cos(theta) - b*sin(theta)) + a*b*N,%): 
simplify(%); 

1

y02
K 2 y0 y1C y12

C x02
K 2 x0 x1C x12

 (y0 x1 Pyy

K y0 x1 PxxK y0 x0 PyyC y0 x0 PxxK y1 x1 Pyy
C y1 x1 PxxC x0 y1 PyyK x0 y1 Pxx
CN y03 x1KN x03 y1CPy y02 x0
CPy x0 x12

K 2 Py x02 x1K 2 Py y02 x1KPy x0 y12

CPx y0 x12
C 2 Px y02 y1KPx y0 y12

KPx x02 y0
C 2 Px x02 y1C 2 Pxy x0 x1K 2 Pxy y0 y1
C 2 Py y0 x1 y1K 2 Px x0 x1 y1CN x02 y1 x1
CN x0 y12 y0KN y0 x12 x0
CN y0 x1 x02

KN x0 y1 y02
KN y02 x1 y1

CPy x03
KPx y03

KPxy x02
KPxy x12

CPxy y02

CPxy y12)

 

> # 
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# Curve Euclidean invariant eta_yy 
# g o (x0,y0,x1) = (0,0,0) 
# 
eqn1:=cos(theta)*x0-sin(theta)*y0+a=0: 
eqn2:=sin(theta)*x0+cos(theta)*y0+b=0: 
eqn3:=cos(theta)*x1-sin(theta)*y1+a=0: 
solve({eqn1,eqn2,eqn3},{theta,a,b}): 
eval(Pxx*sin(theta)^2 + Pyy*cos(theta)^2 + 2*Pxy*cos(theta)*sin(theta) + 
2*b*(sin(theta)*Px + cos(theta)*Py) + b^2*N,%): 
simplify(%); 

1

y02
K 2 y0 y1C y12

C x02
K 2 x0 x1C x12

 (Pxx x12
CPyy y12

C 2 x0 x1 Py y0
C 2 y0 y1 Px x0K 2 y0 y1 Px x1K 2 y0 N x02 y1
CN x02 x12

C 2 y0 Pxy x0K 2 y0 Pyy y1K 2 y0 Pxy x1
C 2 y02 N x02

C y02 Pyy
C 2 y0 N y1 x0 x1K 2 y02 N x0 x1K 2 N x03 x1
K 2 Pxx x0 x1C 2 Pxy x1 y1C y02 N y12

CN y04
K 2 x02 Py y0C 2 x02 Py y1C 4 x02 Px x1CN x04

CPxx x02
K 2 Pxy x0 y1K 2 x0 x12 PxK 2 y03 N y1

K 2 x03 PxK 2 y03 Py
C 2 y02 Px x1K 2 x0 x1 Py y1K 2 y02 Px x0
C 4 y02 y1 PyK 2 y0 y12 Py)

 

>  
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Appendix C 
 
Matlab files 

Check invariance 
 
% Check the result of  
% "krw1_curve_Eu_inv"  
%   Author:      K.R. Widder 
%   Time-stamp:  11/24/06 
%   E-mail:      widder@wisc.edu 
% (C) 2006 by Kerry Widder 
% created: 11/24/2006 
% adapted from file created by Wei-Yang Lin 
 
clear all; 
close all; 
clc; 
 
N = 70; 
theta = 0:pi/3/(N-1):pi/3; 
x = cos(theta); 
y = sin(theta); 
[Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv_den om(x',y'); 
disp('% krw1_curve_Eu_sum_inv_denom'); 
disp(['(Ix, Iy, Ixx, Ixy, Iyy) = (' num2str(Ix) ', '... 
     num2str(Iy) ', ' num2str(Ixx) ', ' num2str(Ixy ) ', ' num2str(Iyy) ')']); 
 
% plot(x,y,'r:'), hold on; 
disp('% krw1_curve_Eu_sum_inv'); 
 
for i = 1:10 
    theta = 2*pi*rand(1); 
    t1  = 100*randn(1); 
    t2  = 100*randn(1); 
%    disp(['(theta, t1, t2) = (' num2str(theta*360/ 2/pi) ', '... 
%            num2str(t1) ', ' num2str(t2) ')']) 
    R   = [cos(theta) -1*sin(theta); sin(theta) cos (theta)]; 
    T   = [t1 t2]'; 
    pts = [x;y]; 
    pts = R*pts + T*ones(1,N); 
    xx  = pts(1,:); 
    yy  = pts(2,:); 
    [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv (xx',yy'); 
    disp(['(Ix, Iy, Ixx, Ixy, Iyy) = (' num2str(Ix)  ', '... 
         num2str(Iy) ', ' num2str(Ixx) ', ' num2str (Ixy) ', ' num2str(Iyy) ')']); 
end 
plot(x,y,'r:'), hold off; 
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Calculate Summation Invariants 
 

function [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_su m_inv(x,y) 
% krw1_curve_Eu_inv compute Euclidean summation inv ariant of curve 
% like Eq. (2.12 - 2.16) in Wei-Yang's thesis, only  different normalization 
%  Uses normalization equation:  (x(1), y(1), x(N))  = (0,0,0) 
% 
%   [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv (x,y)  
%   x : N x 1 column vector 
%   y : N x 1 column vector 
% 
% 
%   ,where  
%   (x(1),y(1)) is initial point 
%   (x(N),y(N)) is end point 
%   P10 = sum_1^N x(t)  
%   P01 = int_1^N y(t)  
%   P20 = sum_1^N x(t)^2  
%   P11 = int_1^N x(t)*y(t)  
%   P02 = sum_1^N y(t)^2  
% 
%   Author:      K.R. Widder 
%   Time-stamp:  11/24/06 
%   E-mail:      widder@wisc.edu 
% (C) 2006 by Kerry Widder 
% created: 11/24/2006 
 
 
% x : N x 1 column vector 
% y : N x 1 column vector 
 
N = size(x,1); 
 
P10 = sum(x); 
P01 = sum(y); 
P20 = sum(x.*x); 
P11 = sum(x.*y); 
P02 = sum(y.*y); 
 
%I_1 = N^2*(x(1)^2 + y(1)^2) + P10^2 + P01^2 - 2*N* (x(1)*P10 + y(1)*P01); 
 
Iy  = P10*(x(1) - x(N)) + P01*(y(1) - y(N)) + N*x(1 )*(x(N) - x(1)) + N*y(1)*(y(N) - y(1)); 
 
Ix  = P01*(x(N) - x(1)) + P10*(y(1) - y(N)) + N*( x (1)*y(N) - x(N)*y(1) ); 
 
Ixx = 2*P10*((y(1) - y(N))*(y(N)*x(1) - y(1)*x(N))) ... 
        + 2*P01*(x(1) - x(N))*(y(1)*x(N) - y(N)*x(1 ))... 
        + P02*((x(1) - x(N))^2) +  P20*((y(1) - y(N ))^2) ... 
        + 2*P11*(x(N) - x(1))*(y(1) - y(N))... 
        + N*(( (y(1)*x(N)) - (x(1)*y(N)) )^2); 
 
Ixy =   P10*( y(1)*(x(N)^2 - y(N)^2 - x(1)^2 -y(1)^ 2 + 2*y(1)*y(N)) + 2*x(1)*y(N)*(x(1) - x(N)) )... 
      + P01*( x(1)*(y(1)^2 + x(1)^2 - y(N)^2 + x(N) ^2 - 2*x(1)*x(N)) + 2*y(1)*x(N)*(y(N) - y(1)) )... 
      + (P20 - P02)*(x(1) - x(N))*(y(1) - y(N))... 
      + P11*( (y(N) - y(1))^2 - (x(N) - x(1))^2 ).. . 
      + N*( y(1)*x(N)*(y(1)^2 - x(1)*x(N)) + (x(1)^ 2)*y(N)*(x(N) - x(1)) + x(1)*y(1)*((y(N)^2) + 
x(N)*x(1))... 
      - (y(1)^2)*y(N)*(x(N) + x(1)) ); 
   
 
Iyy = 2*P10*((x(N) - x(1))*((y(1)^2) - y(N)*y(1) - x(1)*(x(N) - x(1))))... 
    + 2*P01*((y(N) - y(1))*((x(1)^2) - x(N)*x(1) - y(1)*(y(N) - y(1))))... 
    + P20*((x(N) - x(1))^2) + P02*((y(N) - y(1))^2) ... 
    + 2*P11*((y(1) - y(N))*(x(1) - x(N)))... 
    + N*((x(N)^2)*(x(1)^2) - 2*y(N)*y(1)*(x(1)^2) +  2*(y(1)^2)*(x(1)^2)... 
    + 2*y(N)*y(1)*x(N)*x(1) - 2*(y(1)^2)*x(N)*x(1) - 2*x(N)*(x(1)^3)... 
    + (y(1)^2)*(y(N)^2) + (y(1)^4) + (x(1)^4) - 2*y (N)*(y(1)^3)); 
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function [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_su m_inv_denom(x,y) 
% krw1_curve_Eu_inv compute Euclidean summation inv ariant of curve 
% like Eq. (2.12 - 2.16) in Wei-Yang's thesis, only  different normalization 
%  Uses normalization equation:  (x(1), y(1), x(N))  = (0,0,0) 
% 
%   [Ix, Iy, Ixx, Ixy, Iyy] = krw1_curve_Eu_sum_inv _denom(x,y)  
%   x : N x 1 column vector 
%   y : N x 1 column vector 
% 
%   ,where  
%   (x(1),y(1)) is initial point 
%   (x(N),y(N)) is end point 
%   P10 = sum_1^N x(t)  
%   P01 = int_1^N y(t)  
%   P20 = sum_1^N x(t)^2  
%   P11 = int_1^N x(t)*y(t)  
%   P02 = sum_1^N y(t)^2  
% 
%   Author:      K.R. Widder 
%   Time-stamp:  11/24/06 
%   E-mail:      widder@wisc.edu 
 
N = size(x,1); 
P10 = sum(x); 
P01 = sum(y); 
P20 = sum(x.*x); 
P11 = sum(x.*y); 
P02 = sum(y.*y); 
D = (y(N) - y(1))^2 + (x(N) - x(1))^2; 
Droot = sqrt(D); 
 
%I_1 = N^2*(x(1)^2 + y(1)^2) + P10^2 + P01^2 - 2*N* (x(1)*P10 + y(1)*P01); 
 
Iy  = (1/Droot)*(P10*(x(1) - x(N)) + P01*(y(1) - y( N)) + N*x(1)*(x(N) - x(1)) + N*y(1)*(y(N) - y(1)) ) ; 
 
Ix  = (1/Droot)*(P01*(x(N) - x(1)) + P10*(y(1) - y( N)) + N*( x(1)*y(N) - x(N)*y(1)) ); 
 
Ixx = (1/D)*(2*P10*((y(1) - y(N))*(y(N)*x(1) - y(1) *x(N)))... 
        + 2*P01*(x(1) - x(N))*(y(1)*x(N) - y(N)*x(1 ))... 
        + P02*((x(1) - x(N))^2) +  P20*((y(1) - y(N ))^2) ... 
        + 2*P11*(x(N) - x(1))*(y(1) - y(N))... 
        + N*(( (y(1)*x(N)) - (x(1)*y(N)) )^2) ); 
 
Ixy =  (1/D)*( P10*( y(1)*(x(N)^2 - y(N)^2 - x(1)^2  -y(1)^2 + 2*y(1)*y(N)) + 2*x(1)*y(N)*(x(1) - x(N))  
)... 
      + P01*( x(1)*(y(1)^2 + x(1)^2 - y(N)^2 + x(N) ^2 - 2*x(1)*x(N)) + 2*y(1)*x(N)*(y(N) - y(1)) )... 
      + (P20 - P02)*(x(1) - x(N))*(y(1) - y(N))... 
      + P11*( (y(N) - y(1))^2 - (x(N) - x(1))^2 ).. . 
      + N*( y(1)*x(N)*(y(1)^2 - x(1)*x(N)) + (x(1)^ 2)*y(N)*(x(N) - x(1)) + x(1)*y(1)*((y(N)^2) + 
x(N)*x(1))... 
      - (y(1)^2)*y(N)*(x(N) + x(1))) ); 
 
Iyy = (1/D)*(2*P10*((x(N) - x(1))*((y(1)^2) - y(N)* y(1) - x(1)*(x(N) - x(1))))... 
    + 2*P01*((y(N) - y(1))*((x(1)^2) - x(N)*x(1) - y(1)*(y(N) - y(1))))... 
    + P20*((x(N) - x(1))^2) + P02*((y(N) - y(1))^2) ... 
    + 2*P11*((y(1) - y(N))*(x(1) - x(N)))... 
    + N*((x(N)^2)*(x(1)^2) - 2*y(N)*y(1)*(x(1)^2) +  2*(y(1)^2)*(x(1)^2)... 
    + 2*y(N)*y(1)*x(N)*x(1) - 2*(y(1)^2)*x(N)*x(1) - 2*x(N)*(x(1)^3)... 
    + (y(1)^2)*(y(N)^2) + (y(1)^4) + (x(1)^4) - 2*y (N)*(y(1)^3))); 

 


