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ABSTRACT

Invariant features play a key role in object and pattern recognition studies. Features that are

invariant to geometrical transformations offer succinct representations of underlying objects so that

they can be reliably identified.

In this dissertation, we introduce a family of novel invariant features based on Cartan’s the-

ory of moving frames. We call these new features summation invariants. Compared to existing

invariant features, summation invariants are inherently numerically stable, and do not require com-

putationally complex numerical integrations or analytical representations of underlying data. We

develop robust methods for extracting summation invariants from sampled 2D contours and 3D

surfaces. We further apply these new invariant features to 2D and 3D object recognition problems.

In an application to a 2D shape recognition problem, we compare the performance of the pro-

posed 2D contour summation invariant features with that of integral invariant features as well as

wavelet invariant features. We observe marked performance enhancement achieved by the new

summation invariant features.

The summation invariant features are also successfully applied to 3D face recognition applica-

tions. We propose robust methods to extract summation invariant features based on 2D contours

and 3D shapes of given facial range images. We further work out an optimal feature selection and

decision fusion method to select the most discriminating invariant features. The same method also

facilitates the development of a multi-region face recognition method that achieves higher perfor-

mance than using a monolithic facial image. To validate the proposed novel 3D face recognition

algorithms, we test them on the Face Recognition Grand Challenge (FRGC) version 2 dataset with



xi

a data corpus of more than 50,000 facial images. The multi-region summation-invariant algorithm

outperforms the best results in the recent FRGC report.

To conclude, we introduce a systematic approach for constructing robust geometrically invari-

ant features. The proposed features provide improved accuracy and are applicable to a wide range

of pattern recognition applications. These are versatile features that can be adapted to an engi-

neer’s choice of transformation group, such as rigid, affine, or similarity transformation group, to

mention a few.
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Chapter 1

Introduction

Object recognition is a major goal of many computer vision applications, but many unsolved

issues characterize the development of practical recognition systems. A typical object recognition

problem can be described as below. An object can be observed from a different point of view, and

hence, the appearance of the same object will vary. For the objects we want to recognize, their

templates, called gallery images, are stored in a database. The task is to match an unknown object

observed from an unknown point of view, called the probe image, against all the templates in a

database.

Now, let us discuss a little bit how an object recognition system works. Given an image of an

object, one wants to use an algorithm that produces a unique feature from the image. Given another

image of the same object, the algorithm should produce exactly the same feature. To achieve this,

the algorithm has to cancel the effect of shape transformations which is the result of changing

viewing angles.

There are many approaches by which one can deal with shape transformations between images.

An intuitive approach is simply to perform every possible transformation of a template to see

whether any of the template’s transformed versions match the probe image. For example, if a

probe image and a template differ only by translation [2], then one can shift the template, pixel by

pixel, until the best match is reached. Obviously, this kind of method is computationally intensive.
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Also, for common transformations in computer vision, such as affine transformation and projective

transformation, the search space becomes overwhelmingly large.

Another method is to store images of an object from all possible viewing angles in the database.

By doing this, one can reduce the computational complexity significantly, but at the price of in-

creasing the storage requirement. Once again, for the common transformations in computer vision,

this approach is not an efficient solution and probably not feasible.

Due to the inherent drawbacks of the previous two approaches, it is necessary to come up

with a more practical solution for real world applications. One can use the concept of geometric

invariance to tackle this challenging problem. Ideally, the invariant descriptors are independent of

viewpoints. By using this kind of shape descriptor, one can match two images directly without any

prior knowledge of the position and the orientation of the camera. Therefore, the invariant-based

method is neither expensive on computation nor storage.

For an invariant descriptor, another important property is that it should extract all the distinctive

information about a shape. Thus, one can identify different shapes by using an invariant feature.

However, an invariant feature does not necessarily have good discrimination ability. For example, a

constant function provides perfect invariance, that is, it will yield the same value for a shape under

arbitrary transformations. The problem is that the constant function will also produce the same

number for different shapes. In other words, one cannot use the constant function to distinguish

two different shapes. This might be an extreme example, but it points out a fundamental issue

associated with the invariant-based approach. Basically, the more invariance properties an invariant

feature has, the less discrimination capability it can provide. In other words, one has to make a

trade off between invariance property and discrimination ability. Of course, how to choose a good

trade off is highly application-specific.
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The trade off consideration leads to the following conclusion: the optimal invariant descrip-

tors are the properties of shapes that will stay unchanged only under a particular class of trans-

formations, not under a larger class of transformations. The paradigm of invariant-based object

recognition can be described as follows:

1. Identify the transformations that an object can undergo in a particular application. In other

words, find a mathematical formulation that can model all the possible shape deformations

in a particular application.

2. Find the descriptors that are invariant to these transformations but not to others.

3. Use these descriptors as shape representations for matching.

In the following sections, we will discuss both common transformations in computer vision

and approaches by which one can find invariant descriptors.

1.1 Geometric Transformations

In this dissertation, we will focus on geometric properties, that is, properties intrinsic to the

shape itself. The treatment of extrinsic properties, like shading, reflectance, and color, that can

function as invariant descriptors, is beyond the scope of my dissertation.

The invariants to the Euclidean transformations, i.e. combinations of rotation and translation,

frequently surface in vision problems. For example, the length of a rod is a Euclidean invariant.

Consider a very simple scenario where a fixed table is parallel with the image plane. Suppose

that a rod on the table does not have a fixed location and orientation: one can easily identify a

particular rod by measuring its length in an image. As another example, when a surface is rotated

and translated in 3D space, its principal curvatures at each point do not change. Thus, the principal

curvatures are Euclidean invariants.

Imaging processing is a larger class of transformations called projective transformations. When

enlarging the set of transformations, the invariants of a smaller set do not remain invariants. For
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example, the length of a rod in an image will change according to different points of view. Simi-

larly, curvatures are not preserved under such transformations. The degree of freedom in this case

is eight, so finding projective invariants is not a trivial task as it is in the Euclidean case. In order to

keep the analysis as simple as possible, one should not enlarge the set of transformations beyond

what is necessary. The trade off consideration, mentioned before, leads to the same conclusion.

In fact, one cannot use purely geometrical methods to find the invariants of projection from

3D space to image plane. The reason is that all the points along a projection ray are mapped

to a point on an image plane; thus, the true depth information is unrecoverable. Model-based

technologies can facilitate the interpolation of missing data, but this fact is not the main focus

of my dissertation. It is common to use subsets of the projective transformations to simplify the

task of finding invariants. For example, one can consider the projection of planar objects and

find the corresponding invariants. In many vision applications, 3D objects contain planar shapes,

such as facets. Hence, the 2D projective transformations and their invariants can facilitate one’s

recognition of many 3D objects.

When objects are relatively small, one can treat projection rays as nearly parallel. On the

basis of this assumption, one can use affine transformations that have six degrees of freedom to

approximate the projective transformations. The affine invariants are often quite useful in 3D

applications.

In sum, specifying a set of transformations is of crucial importance in invariant-based object

recognition. The set of transformations should no larger than what is necessary for the following

two reasons:

1. Invariance that is too general will decrease the discrimination capability of an invariant fea-

ture.

2. It is more difficult to find invariants for a larger set of transformations.
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For some transformations, finding their invariants is difficult or impossible. Under these kinds

of scenarios, one could simplify the problem by reducing the size of transformations. This kind of

simplification has proven useful in many vision applications.

1.2 History of Geometric Invariants

In the field of computer vision, the importance of invariant descriptors has been recognized

since its origin in the 1960s. The emphasis was initially on photometric invariants, and this led

to the development of edge detectors. The early 1980s witnessed the emergence of an interest in

the theory of geometric invariants (invariants that are geometric properties remaining unchanged

under a particular class of transformations).

In computer vision, the primary interest is in mapping between 3D space and 2D image planes.

Historically, most research in vision problems centered on mapping between planes, that is, map-

ping from a plane in 3D space to an image plane. One of the main reasons for this historical focus

is that when spaces are of the same dimension, the transformations often form a group. Group the-

ory applies mathematical machinery to the construction of invariants. It is therefore not surprising

that most invariants in computer vision applications are based on plane-to-plane mappings.

From the perspective of group theory, progress was made in finding invariants of differentiable

manifolds such as curves and surfaces. These differential invariants are local features because they

are measured at each point of a shape. Among the methods that one can use to obtain such features,

there is one that clearly stands out owing to its simplicity and generality. This method is known as

Cartan’s moving frame method and was introduced by Élie Cartan [3] in the middle of the 1930s.

The method is widely used in mathematics and physics, but less well known to the computer vision

community. In computer vision, only very limited kinds of differential invariants are used. The

curvatures, which are Euclidean invariants, are most frequently used. Other differential invariants

obtained by the method of moving frames have been applied in computer vision problems [4, 5].

One can systematically generate the invariants for different kinds of transformations by using the
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method of moving frames. Theoretically, one can produce as many different invariants as one

wants, and the resulting differential invariants are functionally independent.

Many other research works on the pursuit of geometric invariants have appeared in the liter-

ature. In the following sections, we will briefly discuss some popular geometric invariants in the

area of computer vision.

1.2.1 Algebraic Invariants

Algebraic invariants have successfully facilitated efforts to recognize industrial objects [6].

One can obtain these invariants by fitting polynomials to the shape and then by calculating invari-

ants from the polynomial coefficients. The algebraic approach is problematic in several regards.

First, most shapes cannot be expressed in terms of simple polynomials, and this makes the curve

fitting difficult. Second, algebraic invariants are a global method because they require the whole

shape, preventing this approach from working under partial occlusion.

1.2.2 Moment Invariants

The theory of moment invariants for object recognition was first introduced by Hu in 1962 [7].

Given the intensity function of an image f(x, y), one can define moment mpq as

mpq =

∫
∞

−∞

∫
∞

−∞

xpyqf(x, y)dxdy, p, q = 0, 1, 2, . . . . (1.1)

Moment invariants of 2D images are built on the basis of the moments defined above. Sum-

mation invariants, to be defined later in this dissertation, and moment invariants are similar in the

sense that they all depend on summation computations. On the other hand, they are different in

many other regards. Moment is defined globally, that is, the moment requires the whole shape.

Hence, moment invariants are known to suffer from occlusion problems. In [8], four absolute in-

variants of general linear transformations are derived. The resulting invariant feature of an image
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is a 4 × 1 vector. The feature space of moment invariants is quite small compared with that of

summation invariants, as we shall see.

1.2.3 Fourier Descriptor

In [9], affine-invariant Fourier descriptors are used in airplane recognition. The authors con-

struct the affine-invariant Fourier descriptors by eliminating dependencies on the affine transforma-

tion in the Fourier domain. They assume that the contours are closed and without self-intersection.

Consider a parameterized curve,

x(t) =



 u(t)

v(t)



 (1.2)

Fourier transform is then applied to u(t) and v(t), resulting in Fourier coefficients U and V .

U(0), V (0) are ignored since they depend on translation. The remaining coefficients are all trans-

lation invariants. Affine-invariant Fourier descriptors are derived as follows: Let X k represent the

kth Fourier coefficient of the affine transformed contour. Similarly, Xk represents the same coeffi-

cient from the Fourier transform of original contour. Since Fourier transform is a linear operation,

one has

Xk = AXk (1.3)

,where A is a 2 × 2 matrix with real entries. Choosing any two coefficients, say k and p, and

constructing 2 × 2 matrix

[
Xk Xp

]
(1.4)

one can show that
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[
Xk Xp

]
= A

[
Xk Xp

]
(1.5)

Taking the determinant of both sides, one obtains a relative affine invariant as below:

det
[
Xk Xp

]
= detA det

[
Xk Xp

]
(1.6)

This method cannot extract local characteristics in the space domain because a Fourier trans-

formation requires the whole contour. One can control sensitivity to noise by ignoring detail co-

efficients. The number of dropped coefficients is experimentally determined. This approach is

similar to how the window of semi-local summation invariants is determined. Because one is free

to use either a coefficient or its complex conjugate in Equation (1.6), one has 16N 2 invariants for

N coefficients. The resulting feature space is much larger than that of moment invariants.

1.2.4 Wavelet Invariants

Researchers have developed several techniques to preserve locality, that is, to restrict the com-

putation to a local neighborhood: wavelet transformation [10] and potential [11]. In this section,

we will discuss wavelet-based invariants in detail.

Wavelet transformation is a way to represent a signal in multiple resolution levels. This trans-

formation generates approximation and detail coefficients. Let Wix[n] denote the detail coeffi-

cients of x[n] at resolution level i. Then, the affine transformation of x[n] can be written as below:

Wix[n] = aWix[n] + bWiy[n] (1.7)

Note that the wavelet transformation of a constant signal will be always zero. A very simple

affine invariant function involving two resolution levels can be defined as:

ηi,j = Wix[n] ·Wjy[n] −Wiy[n] ·Wjx[n], i 6= j (1.8)
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But, different shape might have the same representation at some resolution levels. In order to

improve the discriminating power, one trivial solution is to incorporate more resolution levels in

one affine invariant function. Khalil et al. [10] proposed a wavelet affine invariant

ηa,b,c,d,e,f [n] =

∣∣∣∣∣∣∣∣∣

1 2Wax[n]Way[n] W 2
a y[n]

1 2Wbx[n]Wby[n] W 2
b y[n]

1 2Wcx[n]Wcy[n] W 2
c y[n]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

W 2
d x[n] 2Wdx[n]Wdy[n] 1

W 2
e x[n] 2Wex[n]Wey[n] 1

W 2
f x[n] 2Wfx[n]Wfy[n] 1

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

W 2
ax[n] 2Wax[n]Way[n] 1

W 2
b x[n] 2Wbx[n]Wby[n] 1

W 2
c x[n] 2Wcx[n]Wcy[n] 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

1 2Wdx[n]Wdy[n] W 2
d y[n]

1 2Wex[n]Wey[n] W 2
e y[n]

1 2Wfx[n]Wfy[n] W 2
f y[n]

∣∣∣∣∣∣∣∣∣

− 2

∣∣∣∣∣∣∣∣∣

W 2
ax[n] 1 W 2

a y[n]

W 2
b x[n] 1 W 2

b y[n]

W 2
c x[n] 1 W 2

c y[n]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

W 2
d x[n] 1 W 2

d y[n]

W 2
e x[n] 1 W 2

e y[n]

W 2
f x[n] 1 W 2

f y[n]

∣∣∣∣∣∣∣∣∣

, where {a, b, c, d, e, f} are indices to six different resolution levels. One can control wavelet

invariants’ sensitivity to noise by choosing an appropriate resolution level. Wavelet invariants usu-

ally ignore the finer resolution levels because they are sensitive to noise. In practical applications,

it is necessary to also perform re-parameterization so that contours have the same length. The

computation complexity of dyadic wavelet transformation is O(N logN), where N is the number

of sampling points on a contour. The semi-local summation invariants have lower computation

complexity, which is O(N).

1.3 Motivation

The moving frame method is completely general and can be used in many cases. However, the

numerical computation of differential invariants is neither accurate nor reliable. The main reason is
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that they depend on high-order derivatives and, thus, are particularly sensitive to noise and round-

off error. To reduce the noise-induced fluctuation, researchers have proposed semi-differential in-

variants that depend on lower-order derivatives [12,13]. The related works include noise-resistant

differential invariants developed by Weiss [14], local invariant signature by Bruckstein et al. [15]

and numerically invariant signature by Calabi et al. [4].

In order to overcome the limitations of differential invariants, researchers have tried to derive

invariants based on integrals. A statistical approach using moments was introduced in [7]. Moment

invariants under affine transformations were derived in [16]. The moment invariants are global fea-

tures, and therefore, the resulting feature space has low dimensionality. It is difficult to distinguish

similar shapes in such a low-dimensional feature space. The error analysis and the analytic char-

acterization of moment descriptors were studied in [17]. Another research project used Fourier

transformation to obtain invariants [9]. One can represent a closed curve by using a set of Fourier

coefficients and then use normalized Fourier descriptors to obtain affine invariants. In general, this

method features high-order Fourier coefficients that are sensitive to noise. Sato and Cipolla formu-

lated semi-local integral invariants by using the affine quasi-invariant arc-length [18]. Hann and

Hickman used potentials to prolong group actions, resulting in invariants consisting of integrals

rather than derivatives [11].

From my point of view, a desirable invariant feature should have the following properties.

1. Systematically generated: The algorithm should be applicable to different transformation

groups and produces corresponding invariant features.

2. Multiple invariants: It is highly desirable to have multiple invariants for a particular trans-

formation group. A combination of invariants will provide performance improvement over

any individual invariant.

3. Robustness: Because sensor noise and quantization in the data are inevitable, an invariant

feature should exhibit immunity to these perturbations.
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These properties serve as a guideline for the design of new invariant features. In this dis-

sertation, we propose a novel scheme, called summation invariants, by which one can construct

invariants whose description are available through summation operations. We explicitly derive

summation invariants for both curves on a plane and surfaces in 3D space. The proposed scheme

can be considered a generalization of the work by Hann and Hickman [11]. One major difference

is that their approach is not generalizable to 3D cases. Here, the groups that are of interest to me

are the Euclidean and the affine groups acting on R
2 and R

3.

1.4 Objectives and Contributions of Dissertation

In this dissertation, we propose a frame work for summation invariants along with four impor-

tant classes of summation invariants. The proposed invariant features are robust in the presence of

noise and quantization error. For different transformation groups and different objects, their cor-

responding summation invariants are generated by the same procedure. The summation invariants

for a particular transformation group are functionally independent, and therefore, one can obtain

performance improvement by combining multiple summation invariants. We use the summation

invariants to define a novel shape representation which is useful across many applications. Two

major applications are listed below.

1. 2D shape recognition: We derive the summation invariants of curves under both Euclidean

transformation and affine transformation. We also demonstrate the specific application of the

matching problem of 2D shapes under nonrigid transformations. The experimental results

show that summation invariants provide better discrimination capability and noise immunity

than do some conventional invariant features.

2. 3D shape recognition: We derive the summation invariants of surfaces under both Eu-

clidean transformation and affine transformation. We propose a 3D face recognition algo-

rithm based on summation invariants. Experimental results concerning the Face Recognition
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Grand Challenge (FRGC) dataset show significant performance improvement by using sum-

mation invariants. We observe a further improvement by combining multiple summation

invariants.

In the following chapters, we present a detailed description of each of these contributions.

1.5 Dissertation Organization

The following information concerns the organization of this dissertation:

In chapter 2, we present an introduction on a modern treatment of the theory of geometric in-

variants. Specifically, we discuss the mathematical definitions of Lie group, orbit, invariant func-

tion, jet space, group-action prolongation, and the method of moving frames. This discussion will

lead to a problem formulation and to definition of terminologies. In this chapter, we also present

various differential and integral invariants that are known in the literature. We then discuss, case

by case, summation invariants for a specific transformation group. Also, we present a comparison

of integral invariants and summation invariants.

In chapter 3, we review some existing invariants that have been used frequently by researchers

for 2D shape recognition. In this regard, we conducted two experiments to evaluate the recognition

performance of summation invariants and other invariant functions. The first experiment addresses

the problem of shape matching under uniform deformation. In the second experiment, we propose

a more flexible and more practical shape-matching scheme where non-uniform deformation and

occlusion are taken into account.

In chapter 4, we will discuss 3D face recognition by using summation invariants. The face

recognition problem is currently an active research topic, and researchers in this field have pro-

posed many approaches. First, we will present a literature survey with an emphasis on technical

terminologies, popular techniques, and previous works on 3D face recognition. Second, we will

introduce some facial image databases that are publicly available and widely used in the research
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community. Third, we will describe the proposed face recognition algorithm in detail and discuss

the experimental results. Finally, we will make concluding remarks on this topic.

In chapter 5, we will present a multi-region face recognition algorithm and discuss some fusion

schemes: namely, the sum rule, linear fusion, and nonlinear fusion.

Chapter 6 presents the summary of my dissertation and remarks on future works.
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Chapter 2

Cartan’s Moving Frame Method and Its Ap-
plication to Object Recognition

2.1 Background

Among all the methods used to obtain invariants, there is one that stands out because of its

simplicity, elegance and generality. This method is known as the method of moving frames. In the

early nineteenth century, Élie Cartan [3] formulated this powerful tool for studying the geomet-

ric properties of manifolds and their invariants under the actions of transformation group. In the

1970’s, several researchers began to place Cartan’s intuitive constructions on a theoretical foun-

dation. An important conceptual step was to define a moving frame as a cortain kind of mapping

from a manifold to a transformation group. More recently, Fels et al. [19, 20] formulate a new

systematical approach for applying the method of moving frames to general transformation group.

This section provides a quick introduction of the basic ideas.

2.1.1 Lie Groups

A Lie group is a group manifold such that the associated group operation is smooth, i.e. in-

finitely differentiable. Two examples are given to illustrate its application.

Example 2.1 The general linear group GL(n,R) consisting of all real invertible n × n matrices

with matrix multiplication as group operation.
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Example 2.2 Let’s consider the Euclidean transformation acting on R
2 where objects on a plane

are subject to translation and rotation operations. Such a transformation may be described using

linear matrix operation in homogeneous coordinates as follows:




x

y

1


 =




cos(θ) −sin(θ) a

sin(θ) cos(θ) b

0 0 1







x

y

1


 (2.1)

where θ, a, b ∈ R. Therefore, the transformation matrices form a group with matrix multipli-

cation as the group operation.

2.1.1.1 Transformation Groups

In many cases, transformations acting on space form a group. More specifically, we have the

following:

Definition 2.1 Let M be a manifold. A transformation group acting on M is a Lie group G which

satisfies

e ◦ x = x, g ◦ (h ◦ x) = (g ◦ h) ◦ x, ∀x ∈M, g ∈ G (2.2)

, where e is an identity element of the Lie group G.

Example 2.3 The n×n matrices with nonzero determinant form a group by matrix multiplication

on column vector x ∈ R
n. This group is usually denoted by GL(n,R).

2.1.2 Orbits and Invariant Functions

Let G be a Lie group acting on a manifold M . The orbit of a point x ∈ M is the set of all

images of x under group action. To be precise, the orbit of x is given by
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Ox = {g ◦ x : g ∈ G} (2.3)

An invariant for the transformation groupG is a function η : M → R which satisfies η(g◦x) =

η(x), ∀g ∈ G, x ∈M .

Example 2.4 In the case of rotation acting on R
2, the orbits are circles centered at the origin for

any point p 6= (0, 0). An invariant function η : R
2 → R is

η(x, y) =
√
x2 + y2 (2.4)

Example 2.5 In the case of translation acting on R
2, orbits are the whole R

2 plane. In this case,

no nonconstant invariant function η : R
2 → R exists.

As illustrate by these two example, the dimension of orbit must be less than the dimension of

manifold for us to be able to find an invariant function.

2.1.3 Jet Space and Prolongations

Unfortunately, it is quite common that the dimension of an orbit is greater than or equal to the

dimension of the manifold, for example, the Euclidean group acting on the plane. One way to

fix this problem is to create a larger space so that we can find an invariant function there. In this

section, we will introduce a suitable space for this purpose, the so called jet space. We then define

how group actions are prolonged so that the coordinates of jet space are appropriately transformed.

Traditionally, a jet space is coordinated by independent variables, dependent variables and

derivatives of dependent variables. Hence, we call it derivative jet space. Consider a smooth

function u = f(x) which involves p independent variables x = (x1, . . . , xp) and q dependent

variables u = (u1, . . . , uq). This allows us to define the derivative jet space Jn, whose coordinates

consist of p independent variables, q dependent variables and all the partial derivatives of order up
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to n. A point in the derivative jet space Jn is denoted by (x, u(n)), where u(n) contains dependent

variables and partial derivatives up to order n. The action of group G on Jn is called the nth

prolongation and is denoted by prnG. This prolonged group action is defined so that the derivatives

of function u = f(x) are mapped to corresponding derivatives of transformed function u = f(x).

Specifically, for any point (x0, u
(n)
0 ) ∈ Jn, the prolonged group action is defined by

pr(n)g ◦ (x0, u
(n)
0 ) = (x0, u

(n)
0 )

In other words, the transformed derivatives are found by evaluating the derivatives of trans-

formed function f(x) at point x0.

Example 2.6 For the Euclidean group acting on R
2, the first prolongation pr(1)G will act on the

space coordinated by (x, u, ux). By equation 2.1 and the definition of prolongation, the transformed

coordinates are given by

x = x · cos θ − u · sin θ + a

u = x · sin θ + u · cos θ + b

ux =
du

dx

dx

dx
=

sin θ + ux cos θ

cos θ − ux sin θ

In other words, the prolonged group action is

pr(1)g ◦ (x, u, ux) = (x cos θ − u sin θ + a, x sin θ + u cos θ + b,
sin θ + ux cos θ

cos θ − ux sin θ
)

2.1.4 Method of Moving Frames

The invariant functions of a group G acting on a jet space Jn is defined as follows.
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Definition 2.2 An invariant for a group G is a function η : Jn → R such that

η(pr(n)g ◦ (x, u(n))) = η((x, u(n))), ∀pr(n)g ∈ pr(n)G and (x, u(n)) ∈ Jn

In this section, we will introduce a systematic way to produce invariants of a Lie groupG acting

on a manifold M . The idea dating back to the early nineteenth century, due to Élie Cartan [3], is

the theory of moving frames. It can be summarized by the procedures below,

First, group action is prolonged onto derivative jet space. We can solve for group

parameters using normalization equations. Then, substituting group parameters into

un-normalized jet space coordinates gives us differential invariants.

Example 2.7 Let us illustrate the theory above with a simple example: Euclidean group acting on

R
2 , shown in equation 2.1. For simplicity, let us assume the curve on the plane can be expressed

as a smooth function y = f(x). The corresponding derivative jet space J (2) is given by,

J (2) = (x, y, yx, yxx)

where yx, yxx denote the first and second derivatives respectively. The prolonged group action

is

pr(2)g ◦ (x, y, yx, yxx) = (x, y, yx, yxx)

where

yx =
dy

dx
=
dy

dx

dx

dx
=

sin θ + yx cos θ

cos θ − yx sin θ

By setting x = 0, y = 0 and yx = 0, we can solve for {θ, a, b}. This gives
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θ = − arctan yx, a =
−x− yyx√

1 + y2
x

, b =
xyx − y√

1 + y2
x

Then, after substituting {θ, a, b} into yxx we have

η =
yxx√
1 + y2

x

(2.5)

Equation (2.5) is the fundamental differential invariant for the Euclidean group acting on R
2

. The equations in example 2.7, {x = 0, y = 0 and yx = 0},are called normalization equations.

Actually, we have the freedom to choose any fixed point in derivative jet space. The guideline

here is to choose a fixed point such that the normalization equations can be easily solved. In this

example, (0, 0, 0) is a natural choice.

The result in Equation (2.5) can be verified by observing its relationship with curvature and arc

length. For a plane curve written in the form y = f(x), the equation of curvature κ is given by

κ =
yxx

(1 + y2
x)

3/2
=

η

1 + y2
x

=
η

s2
(2.6)

, where s is arc length. It’s obvious that Euclidean transformations don’t change curvature and

arc length on a curve. Their product, η = κ · s2, is thus an Euclidean invariant.

From example 2.7, we can also make an intuitive explanation about how the method of moving

frames works. Consider the blue curve shown in Figure 2.1, we draw tangent and normal vector

at a chosen point on that curve. Solving normalization equations gives us a transformation matrix

which brings that chosen point to the origin and makes the tangent vector at that point to be hor-

izontal, as in the red curve in Figure 2.1. That transformation matrix, which is called the moving

frame, also makes the normal vector at the chosen point vertical. So, no matter how the blue curve

is rotated and translated, the normal vector transformed by the moving frame stays unchanged.
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Figure 2.1 Method of moving frame: original curve (blue) and the curve transformed by moving
frame (red).

The method of moving frames provides us a powerful and algorithmic tool to find invariant

functions. But in practical applications, one is forced to compute differential invariants by a dis-

crete numerical approximation and thus they are sensitive to noise.

2.2 Related Works

The fundamental problem about differential invariants is that high-order derivatives have to be

computed, which amplify the effect of noise. For example, the simplest differential invariant of the

equi-affine group requires fourth order derivatives. There have been several approaches developed

to reduce the effect of noise. In this section, we introduce some of the popular approaches known

in the literature.

2.2.1 Approximation of Differential Invariants

In order to reduce sensitivity to noise, semi-differential invariants were introduced by Van Gool

et al. [13, 21]. In such an approach, a higher order differential invariant is approximated by a joint

invariant depending on lower order derivatives evaluated at several points on a curve. Thus, the

computation of high order derivatives can be avoided.
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In [22], a robust differentiation technique has been developed. A canonical coordinate system

which is independent of a given world coordinate system is defined so that all quantities defined on

it are invariants. This method involves smoothing a discretized curve to make the result reasonably

reliable. Human judgments are required to determine appropriate coefficients for smoothing.

Calabi et. al. [4] constructed numerical approximations of differential invariants by using suc-

cessive points on a curve. They discussed the cases of planar curves under Euclidean and affine

transformations. Their numerical approximation of Euclidean curvature depends on Euclidean

distance between successive points and that of affine curvature depends on triangular areas of suc-

cessive points. In my opinion, this is similar to avoiding computation of high order derivatives.

2.2.2 Invariant Parameterization

In [18], Sato and Cipolla introduce a new framework of integral invariants under transforma-

tion group action based on invariant parameterization. They work on an important case in many

computer vision problems, affine transformation acting on R
2. An affine quasi-invariant param-

eterization is derived. The idea behind it is to approximate affine arc-length by using low order

derivatives.

Consider a curve C, to be parameterized by w. Let I denote a line integral of a function F

along C on the interval [w1, w2]

I =

∫ w2

w1

F dw

They replace w with the affine quasi-invariant arc-length τ and choose F (τ) = µ(τ)
−1

2 , µ

denoting affine curvature. The affine quasi-invariant arc-length can be described by Euclidean

arc-length v and Euclidean curvature k as follows,

τ = k
2

5dv
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Since τ is computed from second order derivatives, their method reduces noise-induced fluctu-

ations by avoiding the computation of high order derivatives.

2.2.3 Integral Invariant Signatures

It’s obvious that distance and area are unaffected by Euclidean transformation. Based on this

fact, Manay et al. [23] propose two integral invariants with respect to Euclidean transformation.

Given a curve in R
2, they define a disk centered at a point on that curve. On the disk, the inte-

gral distance invariant computes distance metrics and the integral area invariant computes area

metrics. By moving the disk and computing these two invariants at each point, they can plot the

integral invariant signature.

Unlike the method of moving frames, this method can not systematically produce invariants.

Also, the generalization of their method to other transformation groups is not trivial.

2.2.4 Integral Invariant

Hann and Hickman [11] observe that the root of the problem lies in the derivation of invariants.

The traditional approach prolongs group actions to derivatives and thus the resulting invariants will

depend on derivatives. They define a new jet space, which is coordinatized by integrals. Thus, the

resulting invariants will depend on integrals rather than derivatives and so will not be sensitive

to noise. Compared with the previous two approaches, their method does not use any derivatives

and can generate invariants systematically. They open a new window for the equivalence problem

of shapes under transformation group actions. Since their work is particularly important, we will

discuss it in some detail.

2.2.4.1 Extending a Lie Group Action on R
2 to Potentials

Consider a Lie group G acting on R
2 defined by

g ◦ (x, u) = (x, u), g ∈ G
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The conventional way of deriving invariants is to prolong the group action to derivative jet

space J . For example, J = (x, u, ux, uxx). For integral invariants, the goal is to extend group

action to potentials rather than derivatives. The definition of potentials and potential jet space are

shown below.

Definition 2.3 The potential V i,j of order k is given by

V i,j =

∫
xiujdx (2.7)

, where j 6= 0 and i+ j = k.

Definition 2.4 The potential jet space Jn
p is coordinatized by (x1, u1, x0, u0, V

(n)).

(x0, u0) and (x1, u1) denote the initial and end points of a curve, respectively. V (n) consists of

potentials up to nth order.

For example,

J1
p = (x1, u1, x0, u0, V

0,1)

J2
p = (x1, u1, x0, u0, V

0,1, V 1,1, V 0,2)

2.2.4.2 Affine Invariant

Consider the affine group acting on R
2,

g ◦ (x, u) = (ax + bu+ c, dx+ eu+ f), det


 a b

d e


 6= 0

To find invariants, we first solve for the moving frame, {a, b, c, d, e, f} , by setting

(x1, u1, x0, u0, V
0,1
, V

1,1
) = (0, 0, 1, 1, 0, 0)

Then, an integral invariant ηintegral can be found by substituting {a, b, c, d, e, f} into V
0,2

.
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ηintegral =
{
− 3(x1 − x0)V

0,2 + 6(u1 − u0)V
1,1 + 4(V 0,1)2

−2V 0,1(2x1u1 − 2x0u0 + x0u1 − x1u0) + u0u1(x1 − x0)
2
}

/
{
((x1 − x0)(u1 + u0) − 2V 0,1)2

}
(2.8)

Given a curve u = f(x) through (x0, u0), ηintegral can be computed at each point (x, u). Note

that if two curves C and C are related by an affine transformation, a point (x0, u0) ∈ C must be

identified with the corresponding point (x0, u0) ∈ C to evaluate ηintegral.

Integral invariants are different from differential invariants in the sense that differential in-

variants are defined locally. They are also different from the moment invariants [7], which are

defined globally. Integral invariants are defined semi-locally because the range of integration can

be specified by varying (x0, u0) and (x1, u1). In other words, integral invariants can extract local

characteristics like differential invariants do. Meanwhile, unlike moment invariants, they don’t

suffer from occlusion problems. This property gives us more flexibility in dealing with practical

problems.

In practical object recognition problems, we are usually given sets of discrete points. Each

set of discrete points represents a shape and we want to classify these shapes. From Hann and

Hickman’s point of view, they assume there are continuous shapes behind the discrete data, which

allows them to compute the integral invariants. Their idea has one obvious drawback. It will highly

depend on the sampling resolution. The higher the sampling rate is, the more accurate the integral

will be.

2.3 Summation Invariants

In this dissertation, we develop a novel scheme to find invariants, which are based on the sum-

mation operation of discrete data, called summation invariants. They are independent of sampling

rate and maintain all the nice properties of integral invariants, such as the systematic production
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of invariants and high noise immunity. The transformation groups used to illustrate these novel

techniques are the Euclidean and affine groups, with emphasis on the cases of curves and surfaces

in two and three-dimensional space.

In the following section, we give definitions of potential and potential jet space. Then, sum-

mation invariants for curves in R
2 and for surfaces in R

3 are explicitly derived. A variety of

fundamental geometric transformations are discussed in detail.

2.3.1 Summation Invariants for Curves in R
2

Suppose we have the boundary of a planar object, which is parameterized as {(xn, yn) : n =

1, 2, . . . , N}. Note that the parameterization is not necessarily equally spaced. Consider a trans-

formation group G acting on R
2 defined by

g ◦ (xn, yn) = (xn, yn), g ∈ G

We define potential and potential jet space as follows.

Definition 2.5 The potential Pi,j of order k is given by

Pi,j =
N∑

n=1

xi
n · yj

n, where i + j = k

Definition 2.6 The potential jet space Jk is the Euclidean space with coordinates

(x1, y1, xN , yN , P(k))

where P(k) consists of potentials up to kth order.

For example,
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J1 = (x1, y1, xN , yN ,
N∑

n=1

xn,
N∑

n=1

yn)

In the following two sections, we will address two important transformation groups in computer

vision, namely Euclidean and affine transformations, and derive their summation invariants.

2.3.1.1 Euclidean Summation Invariant of Curves

Given the sampled points on a curve {(xn, yn) : n = 1, 2, . . . , N}, we use (x̄n, ȳn) to denote

that it is transformed by a Euclidean transformation.


 x̄n

ȳn


 =


 cos(θ) −sin(θ)

sin(θ) cos(θ)





 xn

yn


 +


 a

b


 (2.9)

where a, b, θ ∈ R.

One can construct a family of invariant functions ηi,j by applying a moving frame to potentials

Pi,j. For example, we can find a moving frame by solving the following equations,

(x̄1, ȳ1, ȳN) = (0, 0, 0) (2.10)

The equations above are called normalization equations. Note that we are free to specify

normalization equations as long as they can be solved, i.e. a moving frame can be found. Here, we

specify the normalization equations so that the correspodning moving frame can be easily solved.

Let P̄i,j be the potentials transformed by a moving frame,

P̄i,j =
N∑

n=1

x̄i
nȳ

j
n (2.11)

where x̄ and ȳ denote the x and y coordinates transformed by a moving frame. The P̄i,j are

invariant functions under Euclidean transformation acting on R
2, i.e. ηi,j = P̄i,j. The first and

second order invariant functions, i+ j = 1 or 2, have been explicitly derived as shown below:
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η1,0 = P1,0(xN − x1) + P0,1(yN − y1)

+Nx1(x1 − xN) +Ny1(y1 − yN) (2.12)

η0,1 = P1,0(yN − y1) + P0,1(x1 − xN)

+N(xNy1 − x1yN) (2.13)

η2,0 = −2P1,0(x1 − xN )(x2
1 − x1xN + y2

1 − y1yN)

−2P0,1(y1 − yN)(y2
1 − y1yN + x2

1 − x1xN)

+P2,0(x1 − xN)2 + P0,2(y1 − yN)2

+2P1,1(x1 − xN )(y1 − yN)

+N(x1(x1 − xN) + y1(y1 − yN))2 (2.14)

η1,1 = P1,1((x1 − xN)2 − (y1 − yN)2)

+P1,0(y
3
1 + 2x1xNyN − 2yNx

2
1

+x2
1y1 − 2y2

1yN + y1y
2
N − x2

Ny1)

−P0,1(x
3
1 + 2y1yNxN − 2xNy

2
1

+y2
1x1 − 2x2

1xN + x1x
2
N − y2

Nx1)

+(P0,2 − P2,0)(x1 − xN )(y1 − yN)

+N(xNy1 − x1yN)(x1(xN − x1) + y1(yN − y1)) (2.15)

η0,2 = 2(xNy1 − x1yN)(P1,0(yN − y1) − P0,1(xN − x1))

+P2,0(y1 − yN)2 + P0,2(x1 − xN )2

−2P1,1(x1 − xN )(y1 − yN) +N(x1yN − xNy1)
2 (2.16)

2.3.1.2 Affine Summation Invariant of Curves

Affine transformation can be used to approximate the perspective projection of 3D objects

on the image plane. Therefore, invariants of affine transformation have significant importance in
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computer vision. In this section, we explicitly derive the summation invariants of affine transfor-

mations. Consider the affine transformation group G acting on R
2 given by,



x

y



 =



a b

d e







x

y



 +



c

f



 (2.17)

where det


a b

d e


 6= 0

Again, we prolong group action to potentials. The affine-transformed potentials are shown

below:

P 1,0 =
N∑

n=1

(axn + byn + c) = a · P1,0 + b · P0,1 + c ·N (2.18)

P 0,1 =

N∑

n=1

(dxn + eyn + f) = d · P1,0 + e · P0,1 + f ·N (2.19)

Next, moving frame {a, b, c, d, e, f} can be found by solving the normalization equations. In

this case, we specify the normalization equations as follows:

(x1, y1, xN , yN , P 1,0, P 0,1) = (0, 0, 1, 1, 0, 0) (2.20)

By applying the moving frame {a, b, c, d, e, f} to higher order potentials, it will yield summa-

tion invariants under affine group actions. The second order potentials are shown below:

P2,0 =

N∑

n=1

x2
n (2.21)

P1,1 =
N∑

n=1

xn · yn (2.22)

P0,2 =
N∑

n=1

y2
n (2.23)
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They are transformed by affine group action as follows,

P 2,0 = a2P2,0 + 2abP1,1 + 2acP1,0 + 2bcP0,1 + b2P0,2 + c2N (2.24)

P 1,1 = adP2,0 + (ae+ bd)P1,1 + (af + cd)P1,0 + (bf + ce)P0,1 + beP0,2 + cfN (2.25)

P 0,2 = d2P2,0 + 2deP1,1 + 2dfP1,0 + 2efP0,1 + e2P0,2 + f 2N (2.26)

Then, we apply moving frame {a, b, c, d, e, f} solved from Equation (2.20) to P 2,0. The result-

ing affine summation invariant ζ2,0 is given by,

ζ2,0 =
{
P2,0(Ny1 − P0,1)

2 + P0,2(Nx1 − P1,0)
2

−2P1,1(Nx1 − P1,0)(Ny1 − P0,1) −N(y1P1,0 − x1P0,1)
2
}

/
{
(N(xNy1 − x1yN) + (yN − y1)P1,0 − (xN − x1)P0,1)

2
}

(2.27)

Note that we can find infinitely many affine invariant functions by substituting solved values of

{a, b, c, d, e, f} into higher order transformed potentials.

Furthermore, one can show that

g ◦ denominator(ζ2,0) = (ae− bd)2denominator(ζ2,0) (2.28)

g ◦ numerator(ζ2,0) = (ae− bd)2 numerator(ζ2,0) (2.29)

In other words, both denominator and numerator of ζ2,0 are relative invariants under affine

transformation. From an application point of view, relative invariants provide enough informa-

tion for object recognition and we don’t need to worry about the situation where the denominator

vanishes.
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2.3.2 Summation Invariants for Surfaces in R
3

Recent developments in 3D sensor technologies have accelerated the collection of 3D models.

Nonetheless, computational problems arise when comparing these data. In this section, we will

develop the summation invariants for transformation groups acting on R
3.

Consider a surface S ⊆ R
3. We can treat it as a mapping from a connected region U ⊆ R

2 to

R
3

S : (u, v) 7−→ (x, y, z),where (u, v) ∈ U (2.30)

In many engineering fields, we only have a set of sampled points on a surface S. Here, we

assume it is represented as a discrete function with two independent variables.

S =




x[m,n]

y[m,n]

z[m,n]


 , where m ∈ {1, . . . ,M} and n ∈ {1, . . . , N}

Before prolongation of group action, a new definition for potentials is required.

Definition 2.7 The potential Qi,j,k of order ` is given by

Qi,j,k =

M∑

m=1

N∑

n=1

xi[m,n] · yj[m,n] · zk[m,n] (2.31)

, where i, j, k are nonnegative integers, i+ j + k = ` and ` 6= 0.

Then, the summation invariants of a surface patch under transformation group actions can be

derived by Cartan’s method of moving frames.
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2.3.2.1 Euclidean Summation Invariants of Surfaces

In this section, we consider a Euclidean transformation acting on R
3. Given a parameterized

surface (x[m,n], y[m,n], z[m,n]) with m = 1, . . . ,M and n = 1, . . . , N , the summation invari-

ants κi,j,k of surfaces under Euclidean transformation can be expressed in a compact form

κi,j,k = Q̄i,j,k =

M∑

m=1

N∑

n=1

x̄i · ȳj · z̄k (2.32)

where x̄, ȳ and z̄ denote x, y and z coordinates transformed by a moving frame. The remaining

task is simply to find a moving frame. In the previous section, we find a moving frame by solving

normalization equations. Here, solving normalization equations is not trivial since the Euclidean

transformation group acting on R
3 has more degrees of freedom than the one acting on R

2. Instead

of solving normalization equations, a moving frame can be expressed in terms of rotation matrices

R1, R2, R3 and a translation vector T.




x̄

ȳ

z̄


 = R3R2R1(




x

y

z


 − T) (2.33)

We choose a moving frame such that

(x̄[1, 1], ȳ[1, 1], z̄[1, 1], ȳ[M, 1], z̄[M, 1], z̄[1, N ]) = (0, 0, 0, 0, 0, 0) (2.34)

Hence, we have

T =




x[1, 1]

y[1, 1]

z[1, 1]


 (2.35)
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so that (x̄[1, 1], ȳ[1, 1], z̄[1, 1]) = (0, 0, 0). Then, we need to fix the other coordinates in Equa-

tion (2.34). Let

A =




x[M, 1]

y[M, 1]

z[M, 1]


 (2.36)

and express A in spherical coordinates (Ra, θa, φa), where θ and φ are angular displacements

measured from the positive z-axis and positive x-axis, respectively, and R is the distance from the

origin to the point. By setting

R1 =




cosφa sinφa 0

− sinφa cos φa 0

0 0 1


 (2.37)

R2 =




sin θa 0 cos θa

0 1 0

− cos θa 0 sin θa


 (2.38)

, the rotation matrices R1 and R2 will rotate A so that it is lying on the x-axis, i.e.

(ȳ[M, 1], z̄[M, 1]) = (0, 0) (2.39)

Now, there is one degree of freedom left to be fixed. Let

B =




Bx

By

Bz


 = R2R1(




x[1, N ]

y[1, N ]

z[1, N ]


 − T) (2.40)
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and

C =




By

Bz

Bx


 (2.41)

Again, the vector C can be expressed in spherical coordinates (Rc, θc, φc). By setting

R3 =




1 0 0

0 cosφc sinφc

0 − sin φc cosφc


 (2.42)

, the rotation matrices R1, R2, R3 and translation T form a moving frame. Now, the summation

invariants κi,j,k can be generated by simply applying the moving frame to the potentials Qi,j,k.

2.3.2.2 Affine Summation Invariants of Surfaces

The affine group acting on R
3 can be described as below,




a b c

d e f

g h i







x

y

z


 +




j

k

`


 =




x

y

z


 (2.43)

Once again, we prolong group action to potentials. After applying group action, Q1,0,0 is given

by

Q1,0,0 =

M∑

m=1

N∑

n=1

x[m,n]

=
M∑

m=1

N∑

n=1

(ax + by + cz + j)

= aQ1,0,0 + bQ0,1,0 + cQ0,0,1 + jMN (2.44)
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Similarly,

Q0,1,0 =
M∑

m=1

N∑

n=1

y[m,n]

=

M∑

m=1

N∑

n=1

(dx + ey + fz + k)

= dQ1,0,0 + eQ0,1,0 + fQ0,0,1 + kMN (2.45)

Q0,0,1 =

M∑

m=1

N∑

n=1

z[m,n]

=
M∑

m=1

N∑

n=1

(gx+ hy + iz + `)

= gQ1,0,0 + hQ0,1,0 + iQ0,0,1 + `MN (2.46)

Next, moving frame {a, b, c, d, e, f, g, h, i, j, k, `} cab be found by solving normalization equa-

tions. In this case, we specify normalization equations as follows:

(x[1, 1], y[1, 1], z[1, 1], x[M, 1], y[M, 1], z[M, 1],

x[1, N ], y[1, N ], z[1, N ], Q1,0,0, Q0,1,0, Q0,0,1)

= (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0) (2.47)

By applying the solved parameters {a, b, c, d, e, f, g, h, i, j, k, `} to affine-transformed poten-

tials Qi,j,k, one can obtain invariant functions Ψi,j,k under the affine group acting on R
3. To

demonstrate the feasibility of the method of moving frames, the affine invariant Ψ2,0,0 will be

explicitly derived here. Other affine invariants Ψi,j,k can also be explicitly derived in exactly the

same way. The affine-transformed potential Q2,0,0 is given by,
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Q2,0,0 =
M∑

m=1

N∑

n=1

x2[m,n]

= a2Q2,0,0 + b2Q0,2,0 + c2Q0,0,2 + 2j(aQ1,0,0 + bQ0,1,0 + cQ0,0,1)

+2abQ1,1,0 + 2bcQ0,1,1 + 2acQ1,0,1 + j2MN (2.48)

By substituting the parameters {a, b, c, d, e, f, g, h, i, j, k, `}, obtained by solving Equation

(2.47), into Q2,0,0, the resulting affine invariant Ψ2,0,0 of surface is given by:

Ψ2,0,0 ={Q0,0,2(MN(x01y00 − x00y01) +Q100(y01 − y00) +Q010(x00 − x01))
2

− 2Q011(MN(x01y00 − x00y01) +Q100(y01 − y00) +Q010(x00 − x01))

(MN(x01z00 − x00z01) +Q100(z01 − z00) +Q001(x00 − x01))

+Q020(MN(x01z00 − x00z01) +Q100(z01 − z00) +Q001(x00 − x01))
2

− 2Q110(MN(x01z00 − x00z01) +Q100(z01 − z00) +Q001(x00 − x01))

(MN(y01z00 − y00z01) +Q010(z01 − z00) +Q001(y00 − y01))

+Q200(MN(y01z00 − y00z01) +Q010(z01 − z00) +Q001(y00 − y01))
2

− 2Q101(MN(x01y00 − x00y01) +Q100(y01 − y00) +Q010(x00 − x01))

(MN(y00z01 − y01z00) +Q010(z00 − z01) +Q001(y01 − y00))

−MN(Q100(y01z00 − y00z01) +Q010(x00z01 − x01z00) +Q001(x01y00 − x00y01))
2}

/(MN(x00(y10z01 − y01z10) + x10(y01z00 − y00z01) + x01(y00z10 − y10z00))

+Q100(y00(z01 − z10) + y10(z00 − z01) + y01(z10 − z00))

+Q010(x00(z10 − z01) + x10(z01 − z00) + x01(z00 − z10))

+Q001(x00(y01 − y10) + x10(y00 − y01) + x01(y10 − y00)))
2 (2.49)

, where x00 = x[1, 1], y00 = y[1, 1], z00 = z[1, 1], x10 = x[M, 1], y10 = y[M, 1], z10 =

z[M, 1], x01 = x[1, N ], y01 = y[1, N ], z01 = z[1, N ].
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Note that the summation invariant is quite different from the global invariants, such as mo-

ment invariants [7]. The moment invariants require the whole shape. On the contrary, summation

invariants can be evaluated within any region on a surface.

Under affine group actions, the numerator and denominator of Ψ2,0,0 are changed by

numerator(Ψ2,0,0) = (ceg − bfg − cdh− afh+ bdi− aei)2numerator(Ψ2,0,0)

denominator(Ψ2,0,0) = (ceg − bfg − cdh− afh+ bdi− aei)2denominator(Ψ2,0,0)

This shows that the numerator and denominator of affine invariant Ψ2,0,0 are relative affine in-

variants. Recall that the same behavior is observed on the affine summation invariant ζ2,0. This is

an important observation since relative affine invariants provide enough information for classifica-

tion. Performance improvement can also be achieved by combining multiple invariants at various

levels. We will address the issue of integrating classifiers in a separate chapter.

2.3.3 A Numerical Example

In this example, two surfaces related by a rigid transformation are generated and their corre-

sponding summation invariants are calculated. The goal is to give an intuitive understanding of the

behavior of the summation invariant and show that perfect invariance is preserved under noise-free

condition.

Consider a surface S given by

S =




x(u, v)

y(u, v)

z(u, v)


 =




sin(u)cos(v)

sin(u)sin(v)

cos(u)




The data points on surface S are generated by uniformly sampling along u from 0.1π to 0.5π

and along v from 0 to 0.5π. Another surface S̃ is produced by applying a rigid transformation on

the surface S. The relation between the surface S and the transformed surface S̃ is given by:
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Figure 2.2 Two surfaces related by Euclidean transformation




cos(3π
4

) −sin(3π
4

) 0

sin(3π
4

) cos(3π
4

) 0

0 0 1







x

y

z


 +




1

2

1


 =




x̃

ỹ

z̃




These two surfaces are shown in Figure 2.2. Note that rigid transformations consist of rotations

and translations, i.e. no scaling or shearing. In other words, the transformation matrix of a rigid

transformation always has determinant equal to 1. Under such a circumstance, one could use

either denominator or numerator of Ψ2,0,0 and both of them will yield perfect invariance. Here,

both denominator and numerator of Ψ2,0,0 are computed from two surfaces, shown below.

numerator(Ψ2,0,0(x, y, z)) = 1.3141 × 107

denominator(Ψ2,0,0(x, y, z)) = 5.8731 × 104

numerator(Ψ2,0,0(x̃, ỹ, z̃)) = 1.3141 × 107

denominator(Ψ2,0,0(x̃, ỹ, z̃)) = 5.8731 × 104
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Evidently, both denominator and numerator of Ψ2,0,0 remain unchanged when the surface S is

under an arbitrary rigid transformation.

2.4 Robustness in the Presence of Noise

Without the presence of noise, invariant functions obtained by different approaches all exhibit

perfect invariance properties. However, it is always the case in practical situations that the invari-

ance properties will not be exactly maintained and one can only compute invariant features with

limited precision. Thus, it is of great importance to analyze the robustness to noise for different

kinds of invariant functions. In this section, we will compare the summation invariants and the

integral invariants in terms of their numerical robustness. In particular, theoretical analysis relating

second-order statistics are derived to evaluate the impact of noise.

Suppose one wants to evaluate a function f of several variables X1, . . . ,Xn. The variables

X1, . . . ,Xn are only available in quantized form, i.e. we only have access to q(X1), . . . , q(Xn)

where the quantization function is defined by

q(x) = k∆q ,if (k − 0.5)∆q ≤ x < (k + 0.5)∆q (2.50)

where ∆q is the quantization interval and k is an integer. Consequently, the error in the com-

putation of f is

∆f = f(X1, . . . ,Xn) − f(q(X1), . . . , q(Xn)) (2.51)

Thus, we are only concerned with the error due to quantization of the value of variables and are

not concerned with error due to computation or evaluation of functions. In principle, we can com-

pute the moments of ∆f if the joint probability distribution of X1, . . . ,Xn is known. Specifically,

the nth moment of ∆f is given by
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Mn =

∫
· · ·

∫
(∆f)nhX1,...,Xn

(x1, . . . , xn)dx1 · · ·dxn (2.52)

where hX1,...,Xn
is the joint probability density function of X1, . . . ,Xn. However, in practice

we will see that f can be any linear or nonlinear function of its variables and an analytical evalua-

tion of quantization error can be difficult. Some assumptions is usually made to simplify the error

analysis. We will present the error analysis of summation invariants and integral invariants in the

following two sections. For each, its robustness is characterized in terms of the variance of error

in the computed value, as described by Equation (2.51).

2.4.1 Error Analysis on Summation Invariants

In this section, we will give the analytic derivation of the expected squared error for two simple

cases, namely η0,1 and η1,0. This serves to give an idea of the mathematics involved. For other

summation invariants, their error analysis can be done in the same way. The focus is placed on

η0,1 and η1,0 because they are composed of second order monomials. In the following section,

the integral invariants will be composed of second order monomials, too. This leads to a fair

comparison between them in terms of their numerical stability.

First, it is assumed without loss of generality that quantization errors are independent identi-

cally distributed random variables. In order to simplify the analysis, it is further assumed that the

mean of x coordinates and the mean of y coordinates are not zero, i.e.

mx =
1

N

N∑

n=1

xn 6= 0 (2.53)

my =
1

N

N∑

n=1

yn 6= 0 (2.54)

Then,
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∑N
n=1 q(xn)

∑N
n=1 xn

=

∑N
n=1 xn + εxn∑N

n=1 xn

= 1 +

∑N
n=1 εxn∑N
n=1 xn

= 1 +

∑N
n=1 εxn

Nmx
(2.55)

where εxn
is the quantization error associated with xn. One can easily show that,

lim
N→∞

∑N
n=1 q(xn)

∑N
n=1 xn

= 1 (2.56)

Based on this, we can assumeN is large enough so that the potential P0,1 and P1,0 are relatively

insensitive to the quantization error, i.e.

N∑

n=1

q(xn) ≈

N∑

n=1

xn (2.57)

N∑

n=1

q(yn) ≈
N∑

n=1

yn (2.58)

Therefore, the error in the estimate η̂0,1 is given by

∆η0,1 = η̂0,1 − η0,1

≈ −(yN − y1)
N−1∑

n=0

εxn
− (εyN

− εy1
)

N−1∑

n=0

xn

+(xN − x1)

N−1∑

n=0

εyn
+ (εxN

− εx1
)

N−1∑

n=0

yn

−N{xN εy1
+ y1εxN

− x1εyN
− yNεx1

} (2.59)
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One can compute the expected value and the variance of ∆η0,1.

E [∆η0,1] = 0 (2.60)

var [∆η0,1] ≈ σ2{(
N∑

n=1

yn −NyN )2 + (
N∑

n=1

yn −Ny1)
2

+(

N∑

n=1

xn −NxN )2 + (

N∑

n=1

xn −Nx1)
2

+N(yN − y1)
2 +N(xN − x1)

2} (2.61)

Here, the observations are the following. First, the quantization error does not introduce bias

in the estimate η̂0,1. Second, the variance of the estimate η̂0,1 is proportional to N 2.

Similarly, the error in the estimate of η1, 0 is given by

∆η1,0 = η̂1,0 − η1,0

≈ −(εxN
− εx1

)P1,0 − (εyN
− εy1

)P0,1

−N [−x1εxN
+ εx1

(2x1 − xN) − y1εyN
+ εy1

(2y1 − yN)] (2.62)

where the products of the quantization errors are regarded as negligible. The mean and variance

of ∆η1,0 are given by

E [∆η1,0] = 0 (2.63)

var [∆η1,0] = σ2{(−P1,0 +N(2x1 − xN))2 + (P1,0 −Nx1)
2 +

(−P0,1 +N(2y1 − yN))2 + (P0,1 −Ny1)
2} (2.64)

Here, the observations are the same as the previous case, i.e. quantization error does not intro-

duce bias and the variance is proportional to N 2.
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2.4.2 Error Analysis on Integral Invariants

Hann and Hickman [11] introduced the integral invariants and explicitly derive the affine in-

tegral invariant Equation (2.8). Unfortunately, it is not easy to give an analytical error analysis

on Equation (2.8). Instead we consider a simpler case, Euclidean/rigid transformation group, and

derive the corresponding integral invariants. Then, the mean and variance of the estimate of the

Euclidean/rigid integral invariants can be derived analytically.

Let {(x, y) : y = f(x), x ∈ [xa, xb]} be a curve parameterized by x. In order to find integral

invariants, one need to first define a jet space J . For Euclidean group acting on R
2, the jet space is

given by

J = {(xa, ya, yb) : ya = f(xa), yb = f(xb)} (2.65)

Then, one can specify normalization equations and find the corresponding moving frame. To

make the algebraic manipulation as easy as possible, we choose the normalization equations to be

(x̄a, ȳa, ȳb) = (0, 0, 0) (2.66)

where (x̄a, ȳa, ȳb) denotes the results of applying an Euclidean transformation to (xa, ya, yb).

After solving the normalization equations, integral invariants can then be obtained by applying

the moving frame to potentials. Recall that the potentials defined by Hann and Hickman [11] are

shown in Definition 2.3.

Thus, V 0,1 is an order 1 monomial potential and V 1,1, V 0,2 are order 2 monomial potentials.

The integral invariant shown below is obtained by applying the moving frame to V 0,1.

µ0,1 = V 0,1 −
(xb − xa)(yb + ya)

2
(2.67)
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The most straightforward methods for numerical integrations are the left and right Riemann

sums. Here, we use trapezoidal sums as a numerical approximation. The reason for this choice

will be explained later. The trapezoid approximation of V 0,1 associated with the partition xa =

x0 < x1 < . . . < xN−1 = xb is given by

V̂ 0,1 =
1

2

N−2∑

n=0

(yn+1 + yn)(xn+1 − xn) (2.68)

The estimate µ̂0,1 is calculated by replacing V 0,1 in µ0,1 with V̂ 0,1. Note that the estimate µ̂0,1

itself is also an invariant function, i.e.

µ̂0,1(x, y) = µ̂0,1(x̄, ȳ) (2.69)

where x̄, ȳ denotes a curve under arbitrary Euclidean/rigid transformations. Put

ν0,1 = −2 · µ̂0,1 (2.70)

and it can be easily shown that

ν0,1 =

N−1∑

n=0

(xnyn+1 − xn+1yn) (2.71)

where the indices of x, y are given modulo N . Following Eq 2.71 and Eq 2.51, the error in the

integral invariants ν0,1 due to the quantization in x and y coordinates is given by

∆ν0,1 =

N−1∑

n=0

xnyn+1 − xn+1yn −

N−1∑

n=0

q(xn)q(yn+1) − q(xn+1)q(yn)

=
N−1∑

n=0

xnyn+1 − xn+1yn −

N−1∑

n=0

(xn + εxn
)(yn+1 + εyn+1

) − (xn+1 + εxn+1
)(yn + εyn

) (2.72)
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It is assumed without loss of generality that the εxn
, εyn

are independent and identically dis-

tributed, with zero mean and variance σ2. Since the products of εxn
, εyn

are relatively small, the

quantization error ∆ν0,1 is approximated by its first-order errors, i.e.

∆ν0,1 ≈

N−1∑

n=0

xnεyn+k
+ yn+kεxn

− xn+kεyn
− ynεxn+k

(2.73)

Thus, the expected value and the variance of ∆ν0,1 are given by

E [∆ν0,1] = 0 (2.74)

var [∆ν0,1] = σ2
( N−1∑

n=0

(xn − xn+2k)
2 + (yn − yn+2k)

2
)

(2.75)

According to Equation (2.74), the quantization error does not introduce bias in the estimate

ν̂0,1. Also, the variance of the estimate ν̂0,1 is proportional to N and the quantization parameter σ.

2.4.3 Experiment Results

A numerical simulation is conducted to evaluate the accuracy of the derived first and second-

order statistics. The simulation consists of the following steps:

1. Generate a semi circle with radius 100 and perform sampling uniformly along its arc length.

The number of sampling points is 200.

2. Pick up the first N points of the semi circle and compute its invariants. The initial value of

N is 30.

3. The curve with N points is subject to arbitrary Euclidean transformations and then quan-

tization. The parameters of Euclidean transformation are randomly generated. During the

quantization, x and y coordinates are rounded to the nearest integer. Then, we compute

invariants from the quantized curve. This step is repeated 1000 times.
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4. Increase N by 10 and repeat steps 2 and 3.

In practical applications, shapes are always given in quantized format. Hence, there is no way

for a user to control the quantization granularity. Reflecting on this fact, the quantization granular-

ity is a fixed value in our simulation. We should also point out that the value of an invariant feature

depends on the shape of an object. Here, the analysis is limited to the cases where quantization

errors are relatively small, i.e. η � ∆η. For the shapes not satisfying this condition, the computed

invariant values are not reliable and hence have little practical value.

Figure 2.3 shows the variance of ∆ν0,1. It is observed that the results of simulation are very

close to that of the theoretical analysis. Also, the variance is proportional to N as predicted by

Equation (2.75). The variances of ∆η0,1 are shown in Figure 2.4. Again, the results of the simula-

tion are very close to the theoretical predictions.

Figure 2.5 shows the variance of relative errors which is a more descriptive quantity in assess-

ing the precision of an estimate. It is immediately clear that relative error is inversely proportional

to N . So, one can increase the accuracy of summation or integral invariants by increasing N .

According to the error analysis in the previous section, the variances of ∆ν0,1 and ∆η0,1 are pro-

portional to N and N 2 respectively. Hence, the variance of the relative error ∆ν0,1

ν0,1
is expected to

drop faster than that of ∆η0,1

η0,1
. This phenomenon is observed in the results of the simulation. It

indicates that ν0,1 can reduce error more efficiently than η0,1 does.

However, we should also point out that choosing a large N has an undesirable consequence.

In particular, the local characteristics of a shape will be averaged by using a large N . The rule

of thumb is to keep N as small as possible while maintaining an acceptable accuracy. According

Figure 2.5, η0,1 and ν0,1 achieve similar accuracy in the range where N is relatively small.

Thus, one may conclude that 1% mean squared relative error can be achieved for curve seg-

ments with 30 points by using either η0,1 or ν0,1.
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Figure 2.3 The variance of quantization error ∆ν0,1

2.5 Comparison with Curvature

In vision problems, the need to compute curvature from a discretized curve arises quite fre-

quently. However, it is also well known in the computer vision community that achieving an accu-

rate curvature estimation is a rather challenging task. In this section, we will discuss the source of

errors when computing curvatures. This serves mainly to give a feeling for why this is a difficult

problem.

In differential geometry [24], the definition of curvature is given by
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.

Definition 2.8 Let α : [a, b] → R
2 be a curve parameterized by arc length s ∈ [a, b]. The curvature

κ of α at s is defined as

d~t

ds
= κ~n (2.76)

where ~t and ~n are the tangent and normal vectors respectively.

According to Equation (2.76), curvature is proportional to the second order derivative. Hence,

the problem of estimating the curvature has much in common with that of estimating the derivatives
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.

of a function. For simplicity, we will illustrate the issue of estimating derivatives by analyzing a

very simple case.

Consider a real valued function f : R → R, its first derivative is the limit of Equation (2.77) as

dx approaches zero.

f̂ ′ =
f(x+ dx) − f(x)

dx
(2.77)
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According to the definition, the intuition is that to achieve the highest accuracy of numerical

computation, one should compute Equation (2.77) with as small a value of dx as possible. How-

ever, this yields erroneous results under practical situations.

To investigate the source of error, consider the following expression for estimating the first

derivative.

f̂ ′(x) =
f(x+ dx) + ε1 − f(x) − ε2

dx

=
f(x+ dx) − f(x)

dx
+
ε1 − ε2
dx

where ε1 and ε2 are the errors in the values of f(x+ dx) and f(x) respectively. If the errors are

bounded by a maximum, εmax, the worst case error in the estimate f̂ ′(x) is given by

2εmax

dx
(2.78)

To further simplify the analysis, εmax is assumed to be independent of dx. Under this assump-

tion, it is clear that the worst case error will become unacceptably large as dx gets smaller and

smaller. On the other hand, it looks like one can reduce error bound by increasing dx. However,

another source of error should be taken into account. According to Equation (2.77), f̂ ′ could be

considered as the average derivative in the interval [x, x + dx], which is generally different from

the value of the derivative at x. By increasing dx, one not only decreases the error bound but also

decrease the precision of the location of the estimate. This phenomenon can be described by the

Heisenberg uncertainty principle in quantum physics: the greater the precision of the position of

the estimate, the smaller the precision of the estimate itself. For curvature as well as higher order

derivatives, this is the fundamental issue one has to deal with.

In [25], the author made the following conclusion:
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the accurate calculation of the curvature for low-curvature regions is in fact impossible

for common images sizes, while reasonable results may under favorable conditions be

obtained for high-curvature regions.

Similarly, Kovalevsky [26] made similar comment about the estimation of the curvature.

We can demonstrate that it is rather difficult to reach practically acceptable estimates

of the curvatures in binary images.

On the contrary, summation invariants get around the difficulty posed by the uncertainty prin-

ciple since they are defined on an interval [x, x + dx] rather than a point. Unlike Equation (2.77)

which is generally different from the derivative at x, the summation invariants provide perfect in-

variance under noise free condition. In the presence of noise, one can improve the accuracy of the

summation invariants by increasing dx without losing the accuracy of the position.

2.6 Summary

The summation invariants are a substantial extension of the seminal work by Hann and Hick-

man [11] in the following ways:

• We propose the new definitions of potentials for planar curves and surface patches. The

potentials defined in [11] have one major drawback: they tend to generate complicated nor-

malization equations and thus finding the corresponding moving frames is difficult. For

transformation groups acting on three dimensional space, solving the normalization equa-

tions become mathematically intractable. By revising the definition of potentials, the nor-

malization equations are greatly simplified and thus finding invariants for transformation

groups acting on three dimensional space becomes possible.

• Hann and Hickman [11] only discuss the case where the affine group acts on R
2 and derive

the corresponding affine integral invariants. However, generalization of their approach to
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3D cases is nontrivial. In this dissertation, our approach is successfully applied in many

important cases, including the Euclidean group acting on R
2, affine group acting on R

2,

Euclidean group acting on R
3 and affine group acting on R

3. In each case, the corresponding

summation invariants are explicitly derived.

Even though the essential philosophy behind summation invariants is similar to that of integral

invariants, these two approaches exhibit quite different behavior in practical applications. For in-

stance, given two set of points related by a particular geometric transformation, their corresponding

summation invariants will be exactly the same under noise free condition. Note that we make no

assumption about how data points are sampled, so it can be applied to a wide range of sampling

conditions. In contrast, perfect invariance is not preserved by integral invariants due to numerical

integration. Inevitably, integral invariants have to live with errors introduced by numerical approx-

imation. This difference seems little but it turns out to make big difference in our experiments.

The issue of numerical robustness is investigated by conducting theoretical analysis and nu-

merical experiments. For short curve segments (less than 60 points), both summation and integral

invariants achieve an acceptable precision of 1% mean squared relative error. Compared to the

numerical computation of curvature, summation invariants demonstrate a significantly better sta-

bility. For curvature, it has been shown that a precision higher than 50% can rarely be achieved

under typical conditions [26].

In addition, the summation invariants share many nice properties of the differential and integral

invariants, which are summarized below:

1. Infinitely many invariants can be derived by substituting moving frame into higher order

potentials.

2. Extension to other transformation groups is straightforward.



52

3. The precision of a summation invariant can be improved by increasing the range of summa-

tion. In addition, one can perform multi-scale analysis by varying the range of the summa-

tion.

4. Summation invariants are local descriptors which allow shape matching under occlusion.
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Chapter 3

2D Shape Matching Under Visual Deforma-
tion

The recognition of shapes in images is one of the fundamental issues in many computer vision

applications. It is challenging due to the large space of shape deformations. The robustness of a

shape representation to such variations can have significant impact on recognition performance. In

this chapter, we will give a brief literature review on the problem of 2D shape recognition. Also,

we will discuss the strengths and weakness of existing invariants used for object recognition and

will give a comparison with summation invariants. Then, we will present a novel approach for 2D

shape matching using geometric properties, summation invariants in particular.

Two experimental results are presented here. In the first experiment, 2D affine summation

invariants are utilized for recognizing fish contours, i.e. closed curves. In the second experiment,

we will consider a more generic situation, the matching of curve segments.

3.1 Introduction

In many 2D shape recognition applications, it is necessary to have a robust alignment so

that corresponding features can be compared with each other. Many existing approaches for
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curve alignment utilize application-specific constraints, such as object recognition based on sil-

houettes [27–29], hand written character recognition [30, 31], etc. In contrast, we tackle the prob-

lem by introducing a novel family of geometric features which can be generically combined with

application-specific constraints.

The curve alignment approaches can be roughly divided into two categories: methods based

on rigid transformation [27, 32] and those based on non-rigid transformation [33–36]. On one

hand, the approaches based on rigid transformations rely on finding optimal transformation pa-

rameters. The applicability of these approaches is relatively limited because of the assumption that

shapes are only subject to rigid transformation. On the other hand, approaches based on non-rigid

transformations solve the correspondence problem by minimizing a cost functional consisting of

deformation metrics [33–36].

Since the method of moving frames is a systematic approach, the summation invariants can be

easily tailored for both rigid and non-rigid cases. In the chapter, the goal is to demonstrate how

summation invariants could be utilized for finding the optimal alignment between two curves.

3.2 Representation of Curves using Summation Invariants

Given a set of sample points on a curve, one can compute summation globally, i.e. the resulting

invariant feature is a scalar number. However, it will be very difficult to perform accurate classifi-

cation in such a low-dimensional feature space since it does not adequately capture local variations

of the underlying objects. To address this problem, we propose a novel semi-local summation in-

variant feature that computes the summation invariant over a local interval of a curve rather than

the entire curve. An important observation is that the lower and upper limits in the definition of

the potentials are not functions of group operations. As such, these limits can be changed from all

the points in the objects to a local subset of points. Let us use the affine invariants as an example

to illustrate this method. For a curve (xn, yn), n ∈ {1, 2, . . . , N}, the mth semi-local summation

affine invariant is given by
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λaffine[m] = (M(xmM
ym1

− xm1
ymM

) + P1,0(ymM
− ym1

) − P0,1(xmM
− xm1

))2 (3.1)

where

P1,0 =
m+M−1∑

n=m

x[mod(n,N)]

P0,1 =

m+M−1∑

n=m

y[mod(n,N)]

m1 = m

mM = mod(m +M − 1, N)

Note that the major differences between these definitions and those of the global summation

invariants are the different summation limits. We only use the denominator of ηaffine because it is

a relative affine invariant. Actually, one can choose either the denominator or numerator of ηaffine,

since they will work in the same manner.

Given N sampled points on a curve, one can compute semi-local summation invariants with

non-overlapping or overlapping intervals. Obviously, using overlapping intervals will yield high-

dimensional features. For simplicity, we will use overlapping intervals. Note that techniques for

dimensionality reduction can be subsequently applied. In the following experiment, the semi-

local summation invariant is computed from a local interval surrounding each sample point so that

the resulting representation of a curve is a vector with dimension N . The length of the the local

interval,M , which can be adjusted according to the specific application, is empirically determined.

Figure 3.1(a) and 3.1(b) show fish contours related by affine transformations. Their represen-

tations using semi-local summation invariants λaffine[m] are depicted in Figures 3.1(c) and 3.1(d)

respectively. For a closed contour, there is neither a beginning point nor an ending point. For the

shape representation using semi-local summation invariant, the location of a starting point only

causes a cyclical translation as one can see in Figures 3.1(c) and 3.1(d).
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Figure 3.1 (a) and (b) are two fish contours related by affine transformation. Their semi-local
summation invariants λaffine[m] are shown in (c) and (d) respectively. Note (c) and (d) are related

by translation because the initial point on the fish contour is randomly chosen.

3.3 Shape Matching Experiments Using Synthesized Data

In this section, several experiments are conducted to explore the behaviors of the shape repre-

sentation using semi-local summation invariants. These experiments will accomplish three things.
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First, they will illustrate how the proposed 2D shape representation could be applied to shape

matching/recognition problems. Second, they will measure its performance compared to that of

two alternative invariant features, the integral invariant feature [11], and the wavelet-based invari-

ant features [10]. Third, the reliability of the proposed 2D shape representation in the presence of

additive noise will be assessed.

3.3.1 Generating the Shape Dataset

A synthesized dataset of marine animals is created for the shape matching experiment. A subset

of 100 distinct types of fish contours are selected from the SQUID database [37]. These selected

fish contours are depicted in Figure 3.2 and are called fish prototypes. Note that some of them are

rather similar. For example, 35 and 56, 37 and 45, as well as 40 and 51 all have similar shapes.

Twenty deformations are generated for each prototype using affine transformations. The affine

transform parameters {a, b, c, d, e, f} are randomly generated for each deformation.



x

y



 =



a b

d e







x

y



 +



c

f



 (3.2)

The affine transformed coordinates
[
x y

]T
will be quantized into integer values. If different

points on the original contour are mapped onto the same coordinate after the affine transformation

and quantization, the duplicate points are eliminated. Therefore, the total number of points in the

affine-transformed curve may be different from that of the original curve. In Figure 3.3, the 20

variations of fish type 1 are depicted. We apply linear interpolation to resample each transformed

contour so that all re-sampled contours have the same number of sample points. In this experiment,

the number of sample points on each re-sampled contour is chosen to be 512. The relationship

between affine-transformed contour x[n] and re-sampled contour x′[n] can be described as shown

below:
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x′[n] =





x[0] if n = 0;

x[bNn
512

c](dNn
512

e − Nn
512

) + x[dNn
512

e](Nn
512

− bNn
512

c) if n = 1, 2, . . . , 511.

where N is the total number of sample points on an affine-transformed contour x[n]. b c and d

e are floor and ceiling operators, respectively.

Three different representations of a fish contour are computed by using semi-local affine sum-

mation invariant, semi-local affine integral invariant and affine wavelet invariant.

To calculate the semi-local summation invariant features, we choose M = 51 as the range of

local summation. The resulting representation of a fish contour is a 512 × 1 feature vector. Each

entry of this vector corresponds to λaffine[m], Equation (3.1), calculated from a 51-point shape

segment.

It is important to know how the summation invariant performs compared with the integral

invariant [11]. Like semi-local summation invariant, each fish contour is represented by a 512 ×

1 feature vector. Each element of this feature vector is calculated by using the denominator of

ηintegral, Equation (2.8). The integration, V 0,1, is approximated by numerical integration over a

shape segment with 51 points.

It’s also important to know how it performs compared with the state-of-the-art methods. In

[10], wavelet-based invariant functions were demonstrated to have superior discrimination power

compared to some traditional methods, namely the moment invariant [8] and Fourier descriptor

method [9]. We calculate η3,4,5,6,7,8[n], n = 1, . . . , 512 using Daubechies’ wavelet of length 4.

According to the author’s suggestion in [10], only the coarsest scale levels (3, . . . , 8) are used to

calculate the affine invariant function. The finest scale levels have been dropped because they are

sensitive to noise. As a result, each fish contour is represented by a 512 × 1 feature vector.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

(31) (32) (33) (34) (35) (36) (37) (38) (39) (40)

(41) (42) (43) (44) (45) (46) (47) (48) (49) (50)

(51) (52) (53) (54) (55) (56) (57) (58) (59) (60)

(61) (62) (63) (64) (65) (66) (67) (68) (69) (70)

(71) (72) (73) (74) (75) (76) (77) (78) (79) (80)

(81) (82) (83) (84) (85) (86) (87) (88) (89) (90)

(91) (92) (93) (94) (95) (96) (97) (98) (99) (100)

Figure 3.2 Database contains 100 prototype fish contours. Each prototype represents one distinct
type of fish.
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Figure 3.3 Variations of fish contours for type 1 in database. Contour deformations are generated
by applying affine transformations on a fish prototype. Twenty deformations are produced for

each prototype.

3.3.2 Experimental Setup and Results

A fice-way cross validation is conducted to evaluate the shape matching performance of the

summation invariants. The details of the experimental procedures are described below:

1. A subset of 100 prototypes of marine animals are selected from the SQUID dataset [37].

For each prototype, 20 deformations are generated by applying affine transformations on the

prototype. Hence, a dataset containing 2000 shapes of marine animals is created.

2. The dataset is divided into 5 equal-sized partitions. In each partition, there are 100 proto-

types and 4 deformations associated with each prototype. In other words, each partition will

contain 400 shapes that correspond to four variations of each of the 100 fish prototypes.
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3. In one shape matching experiment, one partition will be used as gallery set and the others

will be used as probe set. Since the gallery set and the probe set are mutually exclusive,

one could evaluate how well a shape matching algorithm could be generalized to shapes it

has never seen before. More specifically, a probe shape will be matched against all of the

gallery shapes. Then, we can pick up the pair of shapes with highest matching score. If these

two shapes belong to the same prototype, we treat it as a correct matching result. If these

two shapes do not belong to the same prototype, it is regarded as an incorrect match. In my

experiments, the matching score, a.k.a. similarity score, between two shapes is given by:

ρ =

∑N−1
n=0 vgallery[n] · vprobe[n]√∑N−1

n=0 v
2
gallery[n] ·

∑N−1
n=0 v

2
probe[n]

(3.3)

4. In a M-way cross-validation method (M = 5 in our experiment), one can perform M exper-

iments. In the first experiment, the first partition will be used as gallery set and the others

will be used as probe sets. Similarly, in the second experiment, the second partition will be

used as gallery set and the others will be used as probe sets. Therefore, given M partitions

of the whole dataset, one could conduct a total of M experiments. This way, each partition

will be used as the gallery set exactly once in a M-way cross-validation.

5. For each experiment, the shape matching results are reported by a 100×100 confusion matrix

C. cij denotes the (i, j)th element of C and is the number of probe shapes that actually

belong to prototype i, but are considered as prototype j by a shape matching algorithm. The

confusion matrices of all M shape matching experiments will be added together to form the

final confusion matrix, from which one can perform different kinds of statistical analysis.

For example, the probability of incorrect-matching can be calculated as the ratio of the sum

of all the off-diagonal elements to the sum of all the elements.
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The shapes of the marine animals in the SQUID dataset are simple and are closed contours,

i.e. no self intersection. For matching two closed contours, one needs to first align two contours

and then compute their similarity score. In this experiment, the shape matching procedure is as

follows:

1. Circularly shift the feature vector from the probe set by one and compute the corresponding

similarity score ρ with the one from the gallery set.

2. Repeat the previous stepN times, whereN is the number of points on a probe shape. Choose

the maximum as the final similarity score between two shapes.

Using semi-local summation invariant, the five-way cross validation produces 177 matching

errors. Therefore, the probability of incorrect-matching is

℘summation(error) =
177

8000
= 2.21%

Using semi-local integral invariant, the probability of incorrect-matching is

℘integral(error) =
1165

8000
= 14.56%

Using wavelet-based invariant, the probability of incorrect-matching is

℘wavelet(error) =
696

8000
= 8.7%

Obviously, the summation invariant shows better discriminating capability than that of the

wavelet-based invariant and the integral invariant.
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Figure 3.4 Fish contours before and after adding Gaussian distributed noise.(σ denotes the
standard deviation of noise)

Table 3.1 Error Rate of Fish Recognition at Different Noise Level

Summation Invariant Integral Invariant Wavelet Invariant

σ = 0 177
8000

= 2.21% 1165
8000

= 14.56% 696
8000

= 8.7%

σ = 1 367
8000

= 4.59% 3726
8000

= 46.58% 2253
8000

= 28.16%

σ = 2 514
8000

= 6.43% 6012
8000

= 75.15% 3476
8000

= 43.45%

σ denotes the standard deviation of Gaussian distributed noise.

3.3.3 Sensitivity to Noise

In this experiment, the perturbation caused by noise will be investigated. We add Gaussian

noise into the fish contours and then quantize the coordinates of fish contours. Fish contours with

different noise levels are shown in Figure 3.3.3. For each fish contour, the semi-local summation

invariant, semi-local integral invariant and wavelet-based invariant are computed. Once again,

five-way cross validation is utilized to evaluate the shape matching performances of these three

invariant features. The probabilities of incorrect-matching are summarized in Table 3.1. Evidently,

the summation invariant exhibits better noise immunity than the other two methods.
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3.4 Nonrigid Matching Using Summation Invariants

Shape analysis is a vast area and it plays an important role in systems for object recognition,

matching and registration. Some excellent reviews on this topic are available in [38, 39]. Here, we

will discuss the issue of shape alignment, which is a sub-area in shape analysis. Basically, the goal

of shape alignment is to establish a correspondence between two shapes. Many of the alignment

algorithms work in the following way. Let s1 be the arc-length of curve C, s2 be the arc-length of

curve C̃ and φ be a mapping from s1 to s2. Of all possible mappings, the one which minimizes

the cost function is considered as the optimal alignment between C and C̃. The problem can be

formulated as shown below.

arg min
φ

∫

C

{
κ1(s1) − κ2(φ(s1))

}2
ds1 (3.4)

where κ1 and κ2 are curvatures of C and C̃ respectively. This formulation is simple and indeed

captures the fundamental issue behind aligning two shapes. However, its solution is asymmetric.

Since the cost function is integrated along s1, changing the labels of the two curves might result

in different optimal alignments. To see this, consider the following equation which changes the

variable of integration from s1 to s2.

∫

C

{
κ1(s1) − κ2(φ(s1))

}2
ds1

=

∫

C̃

{
κ1(φ

−1(s2)) − κ2(s2))
}2dφ−1(s2)

ds2
ds2

This says that the optimal alignment φ−1 can be found by minimizing the cost function below.

∫

C̃

{
κ1(φ

−1(s2)) − κ2(s2))
}2
w(s2)ds2

Due to the existence of the weight w(s2), the mapping φ−1 does not necessarily minimize the

cost function
∫

C̃

{
κ1(φ

−1(s2)) − κ2(s2))
}2
ds2.
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3.4.1 Symmetric Problem Formulation

The asymmetry issue can be eliminated by using the alignment curve [40], resulting in a revised

problem formulation. The alignment between two curves C and C̃ is specified in terms of two

functions h1 and h2. The functions h1 and h2 share a common domain denoted by ξ. The function

h1 is a mapping from ξ to s1. Similarly, the function h2 is a mapping from ξ to s2. Both h1 and

h2 are not necessary invertible. This assumption makes alignment between the two curves more

flexible. In particular, this allows the cases where a correspondence is many-to-one or one-to-many.

When h1 is invertible, one can establish a direct mapping from s1 to s2, i.e. s2 = h2(h
−1
1 (s1)) =

h2 ◦ h
−1
1 (s1). Similarly, one has a direct mapping from s2 to s1 when h2 is invertible. The case

where both h1 and h2 are invertible does not exist. This will soon be clear when we introduce the

notation of alignment curve.

By introducing the shared parameter ξ, the original problem formulation can be transformed

into a symmetric one. More specifically, the cost function is revised so that it is an integral over ξ.

Now, we will move on to the details of the symmetric formulation. Let α be the alignment

curve with coordinates (h1(ξ), h2(ξ)).

α(ξ) , (h1(ξ), h2(ξ)), ξ ∈ [0, L̃] (3.5)

α(0) = (0, 0) (3.6)

α(L̃) = (L1, L2) (3.7)

where ξ is arc-length along the alignment curve. L1, L2 and L̃ are the total length along C,

C̃ and the alignment curve α, respectively. The angle between the tangent to the alignment curve

and the x-axis is denoted by ψ. An example of an alignment curve is shown in Figure (3.5). The

arc-length parameters s1 and s2 can then be expressed in terms of ψ, as shown below.
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Figure 3.5 By introducing the alignment curve α in the problem formulation, the optimal solution
allows for a segment from one curve corresponding to a single point on the other curve, i.e.

many-to-one correspondence, as well as a single point from one curve corresponding to a segment
in the other curve, i.e. one-to-many correspondence.

s1(ξ) =

∫ ξ

0

cos(ψ(τ))dτ (3.8)

s2(ξ) =

∫ ξ

0

sin(ψ(τ))dτ (3.9)
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Note that an alignment should preserve the ordering of points on curves C and C̃, i.e. if

ξB > ξA, then h1(ξB) ≥ h1(ξA) and h2(ξB) ≥ h2(ξA). Hence, ψ is constrained by the order

preserving property to lie in [0, π
2
]. The cost function of the matching between C and C̃ can now

be re-written in terms of ψ.

Consider an infinitesimal curve segment, shown in Figure (3.6), with the initial point A and

the end point B. Its arc-length is denoted by ds. The tangent vectors at point A and point B are

denoted by ~TA and ~TB respectively. The angle between ~TA and ~TB is denoted by dθ.

cos(dθ) =
< ~TA, ~TB >

‖~TA‖ · ‖~TB‖
(3.10)

Given two infinitesimal curve segments C|[h1(ξa),h1(ξb)] and C̃|[h2(ξa),h2(ξb)], the cost of matching

can be formulated as

|ds1 − ds2| +R|dθ1 − dθ2| (3.11)

where R is a regularization term. In this formulation, the first term penalizes stretching and the

second term penalizes bending. It can be expressed in terms of ψ by changing variables, as shown

below.
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|ds1 − ds2| +R|dθ1 − dθ2|

=

(
|
ds1

dξ
−
ds2

dξ
| +R|

dθ1
dξ

−
dθ2
dξ

|

)
dξ

=

(
|
ds1

dξ
−
ds2

dξ
| +R|

dθ1
ds1

ds1

dξ
−
dθ2
ds2

ds2

dξ
|

)
dξ

=

(
|
dh1

dξ
−
dh2

dξ
| +R|

dθ1
ds1

dh1

dξ
−
dθ2
ds2

dh2

dξ
|

)
dξ

=

(
| cos(ψ) − sin(ψ)| +R|

dθ1
ds1

cos(ψ) −
dθ2
ds2

sin(ψ)|

)
dξ

=

(
| cos(ψ) − sin(ψ)| +R|κ1(h1(ξ)) cos(ψ) − κ2(h2(ξ)) sin(ψ)|

)
dξ (3.12)

The optimal alignment α is the one which satisfies the following criterion.

arg min
α

∫

0

L̃| cos(ψ) − sin(ψ)| +R|κ1(h1(ξ)) cos(ψ) − κ2(h2(ξ)) sin(ψ)|dξ (3.13)

subject to





0 ≤ ψ ≤ π
2

α(0) = (0, 0)

α(L̃) = (L1, L2)

So far, the problem formulation is still based on the differential invariant, i.e. curvature. How-

ever, some summation invariants have the same geometric properties as curvature and therefore
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can replace curvatures in Equation (3.13). For example, η0,1 is invariant to rigid transformation

and yields high values at high curvature regions. By replacing curvature with η0,1, the second term

in Equation (3.13) still has its functionality, i.e. penalizing bending between matched segments.

Hence, the cost of matching two shapes can be defined as shown below.

∫

0

L̃| cos(ψ) − sin(ψ)| +R|η1
0,1(h1(ξ)) cos(ψ) − η2

0,1(h2(ξ)) sin(ψ)|dξ (3.14)

where η1
0,1 and η2

0,1 are Euclidean summation invariants of C and C̃, respectively.

3.4.2 Finding the Optimal Alignment Curve by Dynamic Programming

The minimization problem formulated in the previous section can be solved efficiently using

dynamic programming. There are many shape matching methods based on the dynamic program-

ming algorithm [28, 29, 41]. In this section, we will describe a dynamic-programming algorithm

for finding the optimal alignment curve.

Let C and C̃ be the two curves to be matched. s1, s2, . . . , sn and s̃1, s̃2, . . . , s̃m are sample

points on C and C̃ respectively. The alignment curve is then represented by a sequence of N

points ξ1, ξ2, . . . , ξN where





ξk = (sik , s̃jk
), ik ∈ {1, . . . , n}, jk ∈ {1, . . . , m}, k ∈ {2, . . . , N − 1}

ξ1 = (s1, s̃1)

ξN = (sn, s̃m)

A table of cumulative cost is built and the optimal alignment is searched in the form of a path in

the dynamic-programming table. The DP table has n columns and m rows. The index on column

is denoted i which corresponds to sample points on C. Similarly, the index on row is denoted j

which corresponds to sample points on C̃. An example of a DP table with 16 columns and 14 rows

is shown in Figure (3.7).
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Figure 3.6 An infinitesimal curve segment with arc-length ds. The tangent vectors at point A and
point B are denoted by TA and TB respectively.

A link between the entries (ik−1, jk−1) and (ik, jk) denote the matching of segments C|[ik−1,ik]

and C̃|[jk−1,jk]. Let d(i, j) denote the cost of matching the curve segments C|[s1,si] and C̃|[s̃1,s̃j ],

and let δ([k, i], [`, j]) denote the cost of matching segments C|[sk,si] and C̃|[s̃`,s̃j ]. The DP table is

updated by the following rule:
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Figure 3.7 An example of DP table. Discrete sample points along C and C̃ are the x-axis and
y-axis respectively. The value of d(i, j), stored at the entry (i, j), is updated by considering the 9

possible paths shown here.

d(i, j) = min
k,`

{
d(i− k, j − `) + δ([i− k, i], [j − `, j])

}
(3.15)
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(a) (b) (c) (d)

Figure 3.8 4 cases to be considered during shape matching. (a) The original shape, (b) The
symmetric shape, (c) The original shape with opposite starting point, and (c) The symmetric
shape with opposite starting point. The starting point on each curve is denoted by a red dot.

The parameter ψ is quantized during the computation of the partial cost. In Figure 3.7, one can

see the 9 possible local paths which correspond to the 9 quantized values of ψ.

ψ ∈ {0 ◦, 18 ◦, 27 ◦, 34 ◦, 45 ◦, 56 ◦, 63 ◦, 72 ◦, 90 ◦}. (3.16)

Note that ψ = 0 ◦ serves the purpose of deleting a curve segment on C̃, and ψ = 90 ◦ corre-

sponds to inserting a curve segment on C̃. One has to sequentially update each entry d(i, j) in the

DP table. Finally, the optimal alignment is found by tracing through the DP table. The complexity

of dynamic-programming is O(nm), where n,m are the number of sample points on C and C̃,

respectively.

A shape matching algorithm should be capable of handling symmetric shapes and different

starting points. Figure 3.8 illustrates all these cases for an open contour; C1 is the original shape,

C2 is a symmetric shape, C3 has a different starting point (opposite traversal), and C4 is the com-

bination of C2 and C3. These 4 possible cases should be considered during shape matching. The

same argument holds for matching closed shapes. The cases with symmetric shapes or different

starting point are handled by repeating the DP algorithm on each possible case. Each case will

produce a matching cost and the minimum is taken as shape distance.
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3.4.3 Experimental Results

Several experiments are conducted by using open and closed shapes. The following dataset is

used in the experiments.

SQUID [37] There are 1100 shapes of marine animals. These shapes are simple and closed con-

tours, i.e. no self intersection. Twenty out of 1100 shapes are selected as queries. Also, 1500

open shapes are generated from the closed shapes by manually editing, i.e. deleting about

half of each shape.

Each shape is represented by a sequence of points. All shapes are preprocessed by Petrakis

et. al. [1] so that their lengths range from 80 to 100. These datasets, including open shapes, are

available on the Internet, http://www.ced.tuc.gr/∼petrakis.

Figure 3.9 shows the results of open shape retrieval. The results reported by Petrakis et. al.’s

algorithm [1] are shown in Figure 3.10. In both figures, the query shape is located in the first row

and the retrieved 20 best matches are placed in the following rows. The shapes retrieved by the two

algorithms are very similar. This demonstrates that the proposed algorithm achieves at comparable

performance with the state-of-the-art. However, differences can still be observed by taking a closer

look at the retrieved shape, Target 702, in Figure 3.10. Obviously, it is an incorrect matching. On

the other hand, there is no such obvious mistake in Figure 3.9.

Figure 3.11 and 3.12 show the results of closed shape retrieval. The proposed algorithm yields

many incorrect matches in this case, e.g. target 398 and 140 in the second row of Figure 3.11. One

possible explanation is that the window size for computing semi-local summation invariants is not

chosen properly. It has a direct impact on the resulting shape representation. On one hand, a larger

window is more robust to noise but also has more blurring effect. On the other hand, a smaller

window has less blurring effect but is less robust to noise. Hence, a trade off has to be made which

is a highly application-specific decision.
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Query 9

Target 1280 Target 1444 Target 370 Target 640 Target 209

Target 557 Target 1397 Target 129 Target 573 Target 1413

Target 177 Target 988 Target 1383 Target 126 Target 655

Target 43 Target 1235 Target 1223 Target 1479 Target 78

Figure 3.9 An open query and its 20 best matches retrieved by the proposed shape matching
algorithm.

3.5 Summary

The feasibility of applying summation invariants in 2D shape analysis is discussed in this chap-

ter. A novel shape representation based on summation invariants is introduced. In the form of

semi-local summation invariant representation, a planar curve is represented by the values of semi-

locally computed summation invariants. It could be tailored so that it is only invariant to a par-

ticular type of geometric transformations, i.e. discrimination capability is maximized. Also, the
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Query 9

Target 1280 Target 860 Target 836 Target 979 Target 1276

Target 370 Target 951 Target 705 Target 57 Target 702

Target 18 Target 1201 Target 977 Target 1162 Target 1296

Target 1292 Target 1100 Target 156 Target 1333 Target 1284

Figure 3.10 An open query and its 20 best matches retrieved by Petrakis et. al.’s algorithm [1].

geometric characteristics of a planar curve are well preserved by the proposed shape representation

and hence it is useful for general shape analysis problems.

Two sets of experiments are conducted to evaluate the performance of using the proposed

shape representation. In the first set of experiments, the proposed representation exhibits better

discriminative capability and better noise immunity than some conventional shape representations.

In the second set of experiments, a novel shape matching algorithm which combines dynamic

programming and the proposed shape representation is tested on the dataset of marine animals. It

successfully performs matching and retrieval on shapes with considerable amounts of deformation
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Query 17

Target 935 Target 353 Target 398 Target 302 Target 140

Target 24 Target 214 Target 610 Target 448 Target 176

Target 977 Target 752 Target 711 Target 929 Target 622

Target 251 Target 343 Target 960 Target 701 Target 613

Figure 3.11 An closed query and its 20 best matches retrieved by the proposed shape matching
algorithm.

and achieves comparable performance with the-state-of-the art algorithms [1]. The proposed shape

matching algorithm is capable of handling both open and closed shapes.

Among the possible future directions, more comprehensive experiments on shape retrieval are

necessary. However, human judgment is inevitably involved in evaluating the results of shape

retrieval. In order to have statistically meaningful results, a suitable number of human subjects are

required.
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Query 17

Target 935 Target 40 Target 710 Target 1089 Target 13

Target 347 Target 199 Target 185 Target 894 Target 891

Target 933 Target 704 Target 455 Target 302 Target 2

Target 271 Target 963 Target 981 Target 938 Target 954

Figure 3.12 An closed query and its 20 best matches retrieved by Petrakis et. al.’s algorithm [1].
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Chapter 4

3D Face Recognition

4.1 Introduction

Face recognition technology has many advantages that make it a preferable choice for biometric

authentication. In fact, it is one of the fastest growing biometric technologies because cooperation

from the user is NOT required. Face recognition can be deployed in high volume applications

where obtaining other biometrics, such as fingerprint or iris, is impractical. However, rigorous

tests with real-world data, such as FERET and FRVT, have revealed many shortcomings of existing

approaches [42, 43]. In particular, for large scale, real world situations, current algorithms still

cannot meet the performance requirement for practical applications.

A majority of face recognition approaches make use of typical texture images which are subject

to illumination, pose, and age (temporal) variations, and can easily be altered through simple make-

up efforts. On the other hand, if 3D facial surfaces are available, one may exploit features that are

invariant to appearance variations. For example, the facial surface around cheek bones or the nose

would remain unchanged under varying lighting conditions, are less likely to change due to aging,

and are seldom covered with hairs.

With 3D facial surfaces, the issue of illumination variation can be mostly alleviated; and the

pose variation problem may be normalized successfully [44] if the location of facial features, such

as nose tip, corners of eyes, ..., etc, are given. Unfortunately, one issue remains due to the non-rigid
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nature of the human face. So far, performing face recognition in the presence of facial expressions

is still one of the most challenging problems in pattern recognition.

In the following sections, we will introduce the terminologies and briefly review some tech-

niques used in face recognition.

4.1.1 Technical Terminology

The term recognition is not well defined and can refer to two different scenarios. One scenario

is called identification and the other is called verification. For both scenarios, a system will

match a probe image against a gallery image. The probe set means a collection of images of

various people who are NOT known to the system. In contrast, gallery set means a collection of

images of various people who are known to the system. In an identification scenario, a user does

not claim his/her identity. Hence, a system will search the whole database for the closest match

(a.k.a. one-to-many matching). In a verification scenario, a user will claim his/her identity and

matching is performed against his/her template (a.k.a. one-to-one matching). The identification

scenario is more challenging because matching against a set of images tends to produce more

incorrect results.

The performance of a recognition system can be reported in different ways. On way of report-

ing performance is through a Cumulative Match Characteristics (CMC) curve. A CMC curve

shows, in an explicit way, the trade off between true positive rate versus false positive rate. In a

CMC curve, the y axis is the true positive rate and the x axis is the cumulative rank, which is the

maximum possible matches that a system is allowed to report. If a system is allowed to report a

large number of possible matches, the true positive rate will increase accordingly. However, the

false positive rate will also increase, as will the work load on human operators. In other words,

performance gain is at the price of increasing the burden on humans.

System performance can also be described by a Receiver Operating Characteristics (ROC)

curve. It is a plot of the true positive rate against the false positive rate for the different possible
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threshold values. The Equal Error Rate (EER), the point where false positive rate equals to false

negative rate, is also commonly used in reporting performance. The lower the EER value, the

higher the accuracy of the biometric system.

4.1.2 Representation Techniques

Principal Component Analysis (PCA) is widely used as a dimensionality reduction procedure.

Specifically, PCA computes an orthogonal basis that leads to a low dimensional representation of

an input image. Turk and Pentland [45] introduced the Eigenface, where the eigenfaces are the

eigenvectors associated with the largest eigenvalues. The eigenfaces span a lower dimensional

space. Performing classification in the reduced space simplifies this task.

The Gabor wavelets provide desirable properties such as spatial locality and orientation selec-

tivity [46]. The biological relevance and computational properties of Gabor wavelets have been

discussed in [47–49]. Lades et al. [50] introduced the dynamic link architecture (DLA) for face

recognition based on Gabor wavelets representation. Liu and Wechsler [51] proposed a Gabor-

Fisher Classifier (GFC) which is robust to illumination variation and facial expressions. The GFC

method combines the Fisher linear discriminant model and Gabor representation of face images. A

recent study [52] indicates that Gabor representation provides better performance than some other

techniques.

4.1.3 Classification Techniques

The Bayes classifier provides the optimal performance if the probability density function is

known. One can improve the PCA performance by integrating PCA with the Bayes classifier. The

Probabilistic Reasoning Models (PRM) [53] method first applies PCA for dimensionality reduc-

tion and then estimates the probability density functions for each class. Moghaddam et al. [55]

proposed a similarity measure for image matching based on Bayesian analysis.

Linear Discriminant Analysis (LDA), or Fisher Linear Discriminant (FLD), is a widely used

approach in pattern classification. Basically, LDA yields the basis which best separates two or more
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Table 4.1 Representation Techniques and Their Applications to Face Recognition

Representation techniques Face recognition algorithms

PCA Eigenfaces [45], PRM [53]

Gabor wavelets DLA [50], EBGM [54], GFC [51]

Bayes classifier PRM [53], Bayesian analysis [55]

LDA/FLD Fisherfaces [56], LDA [57], EFC [58]

ICA ICA [59], EICA [60]

Graph matching DLA [50], EBGM [54]

classes of object. LDA is also related to PCA in that both look for linear combinations of a basis

which best explain the data. However, LDA explicitly attempts to model the difference between

the classes, while PCA does not take into account any difference in class. Many face recognition

algorithms have been proposed to improve discriminating capability [56–58] by using LDA. The

Fisherfaces [56] method first finds a lower dimensional space, where features are obtained by LDA

criterion for face recognition. Note that LDA-based approaches yield better performance only

when training data provides a good representation of image variations. Otherwise, the performance

difference between LDA and PCA is not significant.

Independent Component Analysis (ICA) minimizes both second-order and higher-order de-

pendencies and attempts to find the basis along which the data (when projected onto them) are

statistically independent. Bartlett et al. [59] provided two ICA architectures for face recognition

task: Architecture I - statistically independent basis images, and Architecture II - factorial code

representation. Liu and Wechsler [60] presented the Enhanced ICA (EICA) and its application in

face recognition.
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Graph-based methods have the advantage for performing face recognition in the presence of fa-

cial expressions. Lades et al. [50] proposed the dynamic link architecture (DLA) for face recogni-

tion. Wiskott et al. [54] introduced Elastic Bunch Graph Matching (EBGM) which is an extension

of the DLA method. Faces are represented by labeled graphs, based on a Gabor wavelet repre-

sentation of face images. Image graphs of new faces are extracted by an elastic graph matching

process and can be compared using a simple similarity function.

4.1.4 Previous Work in 3D Face Recognition

The majority of face recognition research focuses on using intensity images of the face. How-

ever, 3D images of the face have several advantages over the intensity-based features. In particular,

3D data provide a better representation for describing properties of the face in areas such as the

cheeks, forehead, and chin, and are illumination invariant.

A comprehensive survey on 3D face recognition can be found in [61]. Here, we focus on those

involving invariant features or dealing with the issue of facial expressions.

The early work of applying invariant functions to 3D face recognition was done over a decade

ago. At that time, people began with the geometrical properties introduced in differential geome-

try, such as curvature. Cartoux et al. [62] proposed a face recognition algorithm based on Gaussian

curvature of the face surface. Their approach yields a 100% verification rate on a small dataset

(5 subjects and 18 range images). Lee and Milios [63] presented an algorithm for establishing

a correspondence between features of two faces. Facial features are obtained by a segmentation

of the range image based on the sign of the mean and Gaussian curvature at each point. Gor-

don [64] identifies the nose region, ridge and valley lines by using mean and Gaussian curvature.

Tanaka et al. [65] also perform curvature-based segmentation and represent the face surface us-

ing an Extended Gaussian Image (EGI). Basically, these approaches use the invariant functions,

e.g. Gaussian curvature is invariant under Euclidean transformations, to extract information from

the face surface and then perform classification based on the extracted information. The invariant
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functions they use all belong to the category called differential invariants which rely on derivative

operations. The computation of differential invariants is not reliable because of the quantization

error in discretized data. This fundamental issue limits their potential to achieve high recognition

performance in a large dataset.

In [66], Lee et al. propose a novel implementation of a person verification system based on

depth-weighted Hausdorff distance (DWHD) using the surface curvatures of the human face. Their

method incorporates the depth information and curvatures of facial surfaces. The maximum, min-

imum and Gaussian curvatures can achieve recognition rates of 95%, 98% and 95%, respectively,

for ranked best 5.

In [67], Lee et al. present a 3D face recognition system based on geometrically localized facial

features. They propose the feature extraction procedure using the geometrical characteristics of

a face. These features are directly applied to two face recognition algorithms, depth-based DP

(Dynamic Programming) and feature-based SVM (Support Vector Machine). Experimental results

show that recognition rates based on the depth-based DP and the feature-based SVM are 95% for

20 people and 96% for 100 people, respectively.

In [68], Moreno et al. analyze the discrimination ability of 3D descriptors extracted from

facial surfaces. Segmentation of facial surface is done by using the signs of mean and Gaussian

curvatures. Eighty six descriptors have been obtained from the segmented regions. Thirty five

more discriminating ones in frontal views provide 78% of recognition rate.

More recently, Medioni et al. [69] perform 3D face recognition using iterative closest point

(ICP) matching. Hesher et al. [70] perform principal component analysis (PCA) of range images.

Similarly, Chang et al. [71] use a PCA-based method separately on 2D pictures and 3D range

images. Matching scores from 2D and 3D are then combined for multi-modal recognition. Further

investigation into the 3D-PCA approach has been reported by Heseltine et al. [72]. Kakadiaris

et al. [73] present a 3D face recognition approach that fits a deformable model to the probe face

surfaces. They perform experiments on the FRGC v1.0 dataset and report a 97% verification rate
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measured at a 0.1% false accept rate (FAR). Note that none of these recent results utilizes any

invariant feature from the face surface.

Expression is a relatively unaddressed issue in face recognition literature. Chang et al. [74]

tackle the issue of expression changes by utilizing three different regions around a nose, as being

relatively rigid areas across different facial expressions. Passalis et al. [75] propose a fully au-

tomatic 3D face recognition algorithm based on the elastically adapted deformable model frame-

work. Their algorithm can fit an Annotated Face Model (AFM) to an input 3D facial surface in

the presence of facial expressions. A 3D face recognition approach based on geometric invariants

was introduced by Bronstein et al. [76, 77]. The key idea of their algorithm is to approximate

facial expressions as isometric transformations, i.e. length preserving transformations. Their ex-

periments are performed on a dataset containing 220 faces of 30 subjects and 1.9% equal error rate

is reported. Their system can distinguish between two identical twins based on 3D images of their

faces.



85

Table 4.2 3D Face Recognition Algorithms Using Invariant Features

Author, number number resolution invariant reported

year, of of of feature performance

reference subjects images image

Cartoux 5 18 N.A. principal 100%

1989 [62] curvatures

Lee 6 6 256 × 150 mean & Gaussian N.A.

1990 [63] curvatures

Gordon 26 training 26 training N.A. curvature 100%

1992 [64] 8 testing 24 testing

Tanaka 37 37 256 × 256 curvature 100%

1998 [65]

Moreno 60 420 2.200 points mean & Gaussian 78%

2003 [68] curvature

Lee 42 84 240 × 320 curvature 98%

2004 [66]

Lee 100 200 varying curvature 96%

2005 [67]

Bronstein 30 220 N.A. Geodesic 100%

2005 [77] distance
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4.2 Face Databases

The appearance of a face is subject to a large number of variations, such as pose, illumination,

expression, occlusion, time lapse. The development of a face recognition algorithm requires a

sufficiently large database with controlled variations of these parameters. Also, in order to evaluate

different face recognition algorithms, it is necessary to have a common database. Evidently, the

availability of public face databases is important for the advancement of this field.

Along with the development of face recognition technology, many face databases have been

collected. In this section, a comparison of some publicly available face databases is presented.

The list of databases, shown below, is limited to those relatively large and commonly used by the

research community.

The availability of evaluation methods has equal importance as that of the face database. The

face databases facilitate the development of face recognition algorithms, and evaluation protocols

allow performance differences between algorithms to be quantified. Basically, an evaluation proto-

col consists of two parts. The first is the rules for conducting an evaluation. For example, training

data, testing data and experimental configurations should be specified. The second part is the for-

mat of the results that allows scoring, i.e. how the system performance should be computed. Until

the FERET evaluation, there was no evaluation protocol that included a large dataset and a standard

evaluation method. Other databases associated with an evaluation method are BANCA, FRGC and

XM2VTS.

All of these databases provide recordings of regular 2D/texture images. Only a few, like MPI,

FRGC 3D and XM2VTSDB, collect 3D information of facial surfaces. The MPI database records

3D data with a Cyberware laser scanner [78]. For 7 out of 200 subjects, their 3D data are available

for download. In Extended M2VTS Database, a 3D model of each subject’s head was acquired

using a high precision stereo-based 3D camera. 3D models of 293 subjects are available. In FRGC

3D dataset, 3D images were acquired by a Minolta Vivid 900/910 series sensor. The Minolta Vivid

900/910 series is a structure light sensor that takes a range image and a registered color image.
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Table 4.3 summarizes the key features of these databases.

• AR database [79]

• BANCA database [80]

• CMU Pose, Illumination, and Expression (PIE) database [81]

• Face Recognition Grand Challenge (FRGC) dataset [82]

• Face Recognition Technology (FERET) database [83]

• Face Database of the Max Planck Institute (MPI) for Biological Cybernetics [84]

• NIST Mugshot Identification Database (MID) [85]

• Extended M2VTS Database (XM2VTSDB) multi-modal face database [86]
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Table 4.3 Comparison of 2D Face Databases

Database number of subjects number of total images Image resolution

AR 116 3288 768 × 576

BANCA 208 N.A. 720 × 576

CMU PIE 68 41,368 640 × 486

FERET 1,199 14,051 256 × 384

MPI 200 14,051 256 × 256

NIST MID 1,573 3248 varying

XM2VTSDB 295 N.A. 720 × 576

FRGC 2D 466 28,804 1704× 2272 or 1200 × 1600

FRGC 3D 466 4,950 640 × 480

N.A. denotes the information is not available.

4.3 3D Face Recognition Using Summation Invariants

In this section, we exploit the feasibility of applying summation invariant features for 3D facial

range image classification. Several key design issues are addressed: (a) To identify, among many

possible variations of summation invariant features in the family, those features that yield highest

performance. (b) To investigate the impacts of various processing methods, including scaling

and re-sampling on the range data. (c) To explore proper dimensionality reduction methods that

will enhance the computation efficiency. We have conducted extensive experiments using the

Face Recognition Grand Challenge v1.0 dataset and the BEE (Biometric Experiment Environment)

package. The proposed features yield significant performance improvement over the FRGC 3D

baseline.

The rest of this section is organized as follows. Section 4.3.1 briefly introduces the 3D face

database and the evaluation protocol. Section 4.3.2 illustrates our algorithm in detail. In Section
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4.3.3, we present the experimental results and compare them with those of the FRGC 3D baseline

algorithm.

4.3.1 3D Face Dataset and BEE

We use the Face Recognition Grand Challenge (FRGC) v1.0 dataset [82] to conduct face recog-

nition experiments. FRGC is sponsored by the US National Institute of Standard and Technology

(NIST) and other government agencies. Its testing data contains comprehensive 3D images of

human faces. It also provides an XML-based evaluation protocol, called the Biometric Experi-

mentation Environment (BEE), to document and describe several face recognition experiments.

All our experiments are conducted using BEE.

The 3D data provided by FRGC v1.0 contains 275 subjects (1 to 8 range scans per subject)

and a total of 943 range scans. Each range scan has a resolution of 640 × 480 pixels. A 3D image

consists of a 2D texture image and a 3D shape image. In this work, we use only the 3D shape

images in all experiments.

4.3.2 Single Region Face Recognition Algorithm

FRGC defines four experiments, among which only experiment 3 concerns the 3D face recog-

nition task. Our experimental procedures follow closely what has been defined for the baseline

algorithm provided by FRGC except for the following modifications. Details of experiment 3 are

omitted here due to space limitation.

1. Use 3D data only: In order to focus only on 3D face recognition performance, the fusion of

matching scores in experiment 3 is disabled so that 2D texture results are not included.

2. Arc-length re-sampling: For 2D curve invariants ηi,j, range data are re-sampled uniformly

with respect to arc-length. Specifically, for each row on the range data, we first compute its

arc-length and re-sample it uniformly with respect to arc-length. Then, we perform the same
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re-sampling on each column. For surface invariants κi,j, we do not perform re-sampling on

the normalized range data.

3. Semi-local summation invariants: While the baseline algorithm uses 3D range data di-

rectly, we extract semi-local summation invariants from a normalized range image and use

the results as invariant features. At each pixel, a semi-local summation invariant is computed

from a local window. We compute curve invariants ηi,j from both a horizontal window and

a vertical window. The results are shown in Figure 4.1. The length of the local window is

chosen to be L = 21. Similarly, we also compute the κi,j,k from a local window surrounding

each pixel. The window size for surface invariants is 17 × 17.

4. Specify a region of interest: Instead of using the entire 3D range image as the baseline al-

gorithm does in BEE, we crop invariant features from an 81×81 rectangular region centered

at the nose tip. A normalized range image with corresponding 81 × 81 cropped region is

shown in Figure 4.2.

5. Alignment refinement: In FRGC, the location of the nose tip is manually selected. We use

the provided nose tip location to define an initial 81 × 81 region. The summation invariants

computed from the 81 × 81 region is called the summation image. For all the normalized

range data, we compute their summation images from the initial region and find their average

image, called the mean of summation images. Then, for each normalized range data, we find

a new 81×81 region which has minimal SSD (sum of squared differences) with the mean of

summation images and compute a summation invariant from the new region. This procedure

leads to more accurate alignment of range data.

6. Dimension reduction: In order to reduce the size of the feature vectors, we use principal

component analysis (PCA) to compute their subspace projections. The PCA basis is com-

puted using the training set containing 183 range images. For classification purpose, the

similarity metric is the Mahalanobis cosine. Note that in our experiments, the training set
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Figure 4.1 (a) The computed result of η0,1 using a horizontal window; and (b) The computed
result of η0,1 using a vertical window.

and the similarity metric are the same as those in the baseline algorithm. Please refer to [71]

for more details

7. Score fusion: There are many ways of combining multiple classifiers to achieve a better

recognition performance. Here, we use the sum rule to combine the matching scores pro-

duced by different invariant features.

The code is implemented in non-optimized C language. The experiments are conducted under

a Linux operating system with a 3.40 GHz XEON processor and 2GB memory. Given the normal-

ized range images, it takes about 5 minutes to compute ηi,j and accomplish the following analysis

(e.g. computing similarity metrics and performing ROC analysis). For computing κi,j,k and the

following analysis, it takes 8 minutes. For the currently available datasets (e.g. FRGC v2.0 dataset

has 50, 000 images), computation cost will be one of the major concerns in designing a face recog-

nition algorithm. We think summation invariant is an efficient and feasible solution to operate on

the large scale datasets like FRGC v2.0.
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Figure 4.2 Normalized depth map and an 81 × 81 region centered at the nose tip.

4.3.3 Experimental Results

We have conducted a series of experiments to assess the performance of the proposed algo-

rithm. The first part is to examine how the recognition performance is affected by the undesirable

scaling in 3D data. The second part is to evaluate the discriminative capability of individual sum-

mation invariants. Decision fusion is considered in the third part. We use a simple fusion strategy

to combine results at the metric level. Finally, we compare with other 3D face recognition algo-

rithms which also operate on the FRGC v1.0 dataset.

4.3.3.1 Effects of Difference Scaling of x and y Coordinates

In this experiment, we explore the issue of scaling on range data by using an individual summa-

tion invariant without decision fusion. Recall that the summation invariants developed in section

2.3 are for the Euclidean group acting on R
2 or R

3. While this feature is invariant to Euclidean

transformations, it will be affected by improper scaling of coordinates. In the baseline algorithm,

x and y coordinates in the range data are discarded after image normalization. Also, the z co-

ordinates are multiplied by a scaling factor to enhance contrast of range images. In our method,

however, it is very important to retain the original geometry of a facial surface. To assess the

issue of improper scaling on range data, we experimented with different values of increments,
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dx = dy ∈ {0.4, 0.6, 0.8, 1.0}, and a fixed scaling factor 12.5 on z values. In Figure 4.3, we ob-

serve a significant impact of these changes on the ROC curve. Specifically, by using either η0,1 or

κ0,0,1, the verification rates increase when dx and dy decrease from 1.0 to 0.4. Then, the verification

rates decrease when dx and dy are smaller than 0.4. Hence, we assume that dx = dy = 0.4 and a

fixed scaling factor 12.5 on z values can reasonably restore the original geometry of a face surface

and use these parameters in the following experiments. In general, better recognition performance

is expected if the original x, y, z information is preserved.

4.3.3.2 Effects of Different Summation Invariants

Summation invariants are functions which are unaffected under the actions of a particular trans-

formation group. In other words, they do not guarantee any discriminative power for object recog-

nition purpose. Hence, it is important to know how they perform individually in a face recognition

application. In this experiment, we do not use score fusion so that the contribution of an individual

summation invariant can be identified. From the ROC curves in Fig 4.4, it is apparent that not all

semi-local summation invariants are created equal in terms of discriminating power. Among five

2D summation invariants, η1,1 yields uniformly highest verification rate at different false accept

rate. Among five 3D summation invariants, κ0,0,1 produces uniformly highest performance. By

the way, summation invariant η1,1 achieves the same level of recognition performance as those of

summation invariants κ0,0,1 while their computation costs are quite different. The computational

cost of ηi,j and κi,j,k are O(L) and O(L2), respectively, where L is the size of the local window.

The results also raise an interesting question about why some invariant features are better in term

of recognition performance. Are there some approaches to predict their performance in advance?

An answer to this question will lead us to construct a better invariant feature. On the other hand,

we should be able to further improve recognition performance by simply combing these invariant

features.
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Figure 4.3 ROC performance for using different unit difference on the x and y coordinates. The
results indicate that geometrical distortion will cause performance degradation of summation

invariants. (a) ROC curves of η0,1 and (b) ROC curves of κ0,0,1.
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Figure 4.4 ROC performance obtained using different summation invariants. (a) ηi,j and (b) κi,j,k
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4.3.3.3 Effects of Combining Summation Invariants

This experiment investigates the value of using more than one summation invariant. The hy-

pothesis for this experiment is that the combined decision of these summation invariants will fur-

ther improve the face recognition accuracy. We only choose summation invariants which have

higher recognition rates to perform fusion because there are too many possible combinations to

be shown. Figure 4.5 shows the ROC curves of combining two summation invariants. The fusion

strategy is simply adding the similarity scores from two different summation invariants, i. e. equal

weights. We observe that fusion does not always yield a higher verification rate. For example,

the combination of η1,1 and η1,0 results in performance degradation at low false alarm rate region.

Kung et al. [87] introduce the notation of consistent fusion, which by definition has an equal or

better performance than any individual classifier in the entire FAR region. Here, the inconsistent

fusion results are due to the improper weightings on classifiers. In the next chapter, we will focus

on the issue of information fusion and present other fusion strategies with consistently superior

performance to that of direct fusion.

4.3.3.4 Comparison With Other 3D Face Recognition Algorithms

In this section, we conduct three experiments to evaluate the performance of our algorithm and

the FRGC baseline algorithm. In the first, we simply run the FRGC baseline algorithm on 3D

data alone. In the second, we still run the FRGC baseline algorithm on 3D data but using only

the 81 × 81 cropped region rather than the whole normalized range data. In Fig 4.6, the second

experiment yields a lower verification rate than the first one. This is reasonable because the second

experiment uses less data to perform recognition. In the third experiment, we compute η1,1 and

κ0,0,1 from the cropped region and then combine them by the sum rule. The proposed algorithm

yields the highest verification rate in the entire FAR region as one can see in Fig 4.6. It achieves

the verification rate of 97.2% at the false accept rate of 0.1% and the EER (Equal Error Rate) of

1.43%. The results clearly indicate that summation invariants offer statistically significant better



97

10
−3

10
−2

10
−1

10
0

0.92

0.94

0.96

0.98

1

False Accept Rate

V
er

if
ic

at
io

n 
R

at
e

 

 

η
1,1

η
1,1

 + η
0,1

η
1,1

 + η
1,0

η
1,1

 + η
2,0

η
1,1

 + η
0,2

η
1,1

 + κ
0,0,1

(a)

10
−3

10
−2

10
−1

10
0

0.92

0.94

0.96

0.98

1

False Accept Rate

V
er

if
ic

at
io

n 
R

at
e

 

 

κ
0,0,1

κ
0,0,1

 + η
0,1

κ
0,0,1

 + η
1,0

κ
0,0,1

 + η
2,0

κ
0,0,1

 + η
1,1

κ
0,0,1

 + η
0,2

(b)

Figure 4.5 ROC performance obtained by combining two summation invariants. (a) Fusion of
η1,1 and others. (b) fusion of κ0,0,1 and others.
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Figure 4.6 Comparison with FRGC 3D baseline algorithm. We apply the FRGC 3D baseline
algorithm on the normalized depth map and the cropped region shown in Fig 4.2. Their
corresponding ROC curves are shown by the solid line and the dash line respectively.

recognition performance than the range data itself. Note that these three experiments use exactly

the same PCA parameters, specifically dropping the first 10 eigenvectors and using the following

100 eigenvectors.

Except for the FRGC 3D baseline, some recent results on the FRGC v1.0 dataset are briefly

discussed below. Kakadiaris et al. [73] present an approach based on the Annotated Face Model

(AFM) and report about 97% verification rate at 0.1% false accept rate. Pan et al. [88] propose a

novel mapping of the range image, called mapped relative depth image, and use it as a feature to

perform classification. Their method achieves an EER of 2.83% on the FRGC v1.0 dataset. Russ

et al. [89] develop a 3D face recognition approach based on the Hausdorff distance metric. Their

experimental validations are conducted on part of the FRGC v1.0 dataset, using only a single probe

per person rather than all available probes. Performance is reported as a verification rate of 93.5%
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at a false accept rate of 0.1%. Evidently, the proposed method has comparable performance with

the state-of-the-art algorithms for 3D face recognition.

4.4 Summary

The value of summation invariants in the context of 3D face recognition is evaluated in this

chapter. The geometric features of a facial surfaces are extracted by using summation invariants

and then the dimensionality is reduced by PCA on the resulting representation. To the best of our

knowledge, Kakadiaris et al. [73] report the best previous results using the FRGC v1.0 dataset.

The proposed algorithm can yield the same level of recognition performance. Furthermore, such a

good performance can be achieved using only the nose portion of the whole face. In general, the

results support the following conclusions:

1. Geometric features extracted by using summation invariants provide useful information for

recognition purposes.

2. The combination of two or more summation invariants generally improves performance over

using a single summation invariant.

Also, we should note that the results reported in this work are obtained using the normalized

range images provided by the FRGC 3D baseline. In theory, we can compute summation invari-

ants from range images without normalizing position and orientation while maintaining the same

performance. Recall that summation invariants are designed to be unaffected by rotations and

translations at the very beginning. Currently, the normalization of raw images is the most time-

consuming part in the FRGC 3D baseline. The normalization alone takes about 20 minutes and the

rest takes about 5 minutes. Thus, an important part of future research along this direction is the

development of a more efficient 3D face recognition technology in which normalization efforts are

reduced by using summation invariants.
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(a) (b)

Figure 4.7 Failure example of the FRGC 3D normalization process: (a) Original range image and
(b) Normalized range image.

Some recognition errors reported by our algorithm are due to the failure in the normalization

step (Figure 4.7). The baseline normalization algorithm works for most of the range images but

not in some special cases. Note that the general quality of 3D range images is not as good as 2D

pictures. In some regions, like eyes, cheeks and eyebrows, current 3D sensing devices, such as the

Minolta vivid 900, tend to either produce wrong depth values or have missing data. These issues

would limit the 3D verification rate in general. Algorithms for reliably recovering data in such

areas is an area where more research is needed.
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Chapter 5

Optimal Linear Fusion for Improving Per-
formance

In this chapter, we propose a novel multi-region face recognition algorithm. Specifically, we

identify multiple sub-regions over a given facial image, and extract summation invariant features

from each sub-region. For matching an image pair, the summation invariant feature of each sub-

region produces a matching score. Then, linear optimal fusion schemes are used to integrate

matching scores from each sub-region. Earlier, in chapter 4, we introduced a single-region face

recognition algorithm. Here, we will focus on the development of a multi-region 3D face recog-

nition method that incorporates novel feature fusion and feature selection methods to significantly

enhance the performance.

The 3D face recognition experiment is conducted using Face Recognition Grand Challenge

(FRGC) version 2.0 data set under the BEE (Biometric Experimental Environment) protocol. Dur-

ing the training stage, a 943 by 943 similarity matrix is computed from the training partition of the

FRGC 3D dataset. The (i, j)th entry of this similarity matrix represents a measure of how close

the feature vector extracted from the ith gallery image is to the jth probe image. It is often a real

number between 0 and 1 after score normalization. With N sub-regions and hence N different

features extracted from the same face image, the objective of score fusion is to combine the N cor-

responding similarity scores into a final similarity score. Toward this goal, we explore two linearly
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optimal fusion methods, namely Linear Discriminant Analysis (LDA) and Linear Support Vector

Machine (LSVM).

The rest of this chapter is organized as follows: In section 5.1, we give a brief review of

previous works on information fusion. Section 5.2 presents the experimental setup and results of

three fusion schemes, namely sum rule, Linear discriminant Analysis and Linear Support Vector

Machine. Finally, we make some concluding remarks in section 5.3.

5.1 Literature Review

In the pattern classification literature, it is well known that combining multiple classifiers often

leads to superior performance to that achieved by any individual classifier [90–92]. There are

two major categories of classifier fusion architecture: stacked generalization [93], also known

as the committee machine [94–97], or the ensemble method [98–103]; versus mixture of experts

[104–106].

Previously, in [107], optimal data fusion is presented under the constraint of a fixed k out of

n weighted threshold fusion architecture. In [108], a hierarchical model is used and the Bayesian

Gibbs sampling method is used to design the fusion rule. Data fusion has also been studied in the

context of combining multiple classifiers. In [109], three types of classifier combination methods,

namely, averaged Bayes classifiers, voting principals, and Dempster-Shafer fuzzy combinations

have been reviewed. Some experiments have been conducted but no conclusive comparison re-

sults are available. In [110], the accuracy of individual classifiers are estimated, and classifiers

are selected dynamically based on which classifier will yield the best performance in a specific

local region. Ji and Ma [111] proposed to use a structure consisting of randomly generated linear

local classifiers with a voting fusion mechanism to perform pattern classification tasks. Petrakos et

al. [112] discussed the effect of correlations between classifiers and their impacts on fusion perfor-

mance. The Behavior Knowledge Space (BKS) method [113] is a non-parametric decision fusion

method that uses a look-up-table (LUT) to implement the decision fusion classifier. For the given
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Figure 5.1 Example of opinion/score fusion. The scores from mouth region and nose are
combined to yield a final score.

set of training samples, the BKS method is guaranteed to offer the best decision fusion results.

However, with a finite number of training samples, the BKS method does not necessarily yield the

best generalization results.

Information obtained from multiple resources could be fused using a number of approaches, at

different levels. We can create a more reliable system by integrating information from multiple re-

sources. In general, there are four possible levels of fusion [114]: (1) sensor level, (2) feature level,

(3) opinion/score level, (4) decision level. Figure 5.1 shows an example of fusion at opinion/score

level.

There might be a strong correlation between the information resources (e.g., multiple invariant

features on a face image) and such a scenario is referred to as tightly coupled integration [115]. On

the other hand, the loosely coupled system means little correlation between information resources

(e.g., feature representation from mouth and nose) and fusion occurs at the output of independent
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classifiers. It has been shown that the independence of classifiers plays an important role in perfor-

mance improvement [116]. Hence, in the following sections, we will focus on the analysis of the

loosely coupled system.

5.2 Multi-Regions 3D Face Recognition Algorithm

As one can see in the previous chapter, the single-region algorithm works very well on the

FRGC v1.0 dataset [117], which contains only neutral expression. Unfortunately, we observe a

significant performance drop when it is applied to FRGC v2.0 dataset where expression changes

exist. To enhance the performance of the single-region algorithm, the major difficulty is to find a

single region which is rigid across expressions and also large enough to provide good discriminat-

ing power. A natural way to overcome this limitation is to utilize multiple regions. In a multi-region

algorithm, each region should be relatively small compared to the one used in the single-region al-

gorithm so that it is relatively rigid across expressions. Also, a multi-region algorithm is expected

to perform better than combining multiple summation invariants [117]. If we compute different

summation invariants from a single region, the extracted information will be highly correlated.

Hence, the benefits of integrating multiple summation invariants will be limited. On the other

hand, the information from different facial regions will be more likely uncorrelated. We will only

address the fusion of different facial regions, referred to as the loosely coupled system [115], rather

than the fusion of different summation invariants.

The scenario of fusion is as follows: Each single-region sub-system matches an input im-

age pair independently and generates the corresponding matching score. The matching scores of

multiple single-region sub-systems are combined by different fusion schemes. Each sub-system is

based on one of the 10 regions shown in Fig. 5.2. We will discuss three approaches for information

fusion.
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Region 1 Region 2 Region 3 Region 4 Region 5

Region 6 Region 7 Region 8 Region 9 Region 10

Figure 5.2 We specify 10 regions on facial surface. Matching scores obtained from each region
are combined to yield the final matching score.

5.2.1 Description of Experiments

We perform experiments using the FRGC v2.0 dataset [82]. In the FRGC, 3D images with

a resolution of 640 × 480 consist of both shape and textures channels. The disjoint training and

validation partitions contain 943 and 4007 3D images, respectively. Among the challenge problems

defined in FRGC v2.0, we focus on experiment 3s, which utilizes only the shape channel in a 3D

image. Performance will be reported on a receiver operator characteristic (ROC) curve that shows

the trade-off between verification and false accept rate. In the FRGC protocol, three masks are

defined over the similarity matrix where each entry contains the matching score of an image pair.

Each mask collects its own set of entries in the similarity matrix, thus generating three ROC curves

which will be referred to as ROC I, II and III. The images within an image pair are called gallery

and probe. In ROC I, gallery and probe are from the same semester. In ROC II, gallery and probe

are from the same year. In ROC III, gallery and probe are from different semesters. On average,
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ROC III has the longest time lapse between gallery and probe images and therefore is the most

challenging.

5.2.2 Sum Rule

The simplest method of fusion is to add the scores from multiple regions. Equal weights are

assigned to each region since we don’t know the relative importance of each region. Figure 5.3

shows the results of using the sum rule on the FRGC v2.0 dataset. Note that the verification

performance of the single-region algorithm is better than the BEE baseline. This, once again,

confirms the fact that summation invariants provide better discriminating capability than depth

value does. But, the performance improvement is limited in the presence of facial expressions.

This limitation can be overcome by utilizing multiple regions. By combining relatively small

regions which are relatively unaffected by expressions, we observe significant improvement in the

verification rate.

5.2.3 Linear Discriminant Analysis

In the FRGC protocol, there are two non-overlapping data partitions, training and validation.

During algorithm development, experiments are conducted on the data in the validation partition.

This allows researchers to tune the parameters of their approaches. However, finding a subspace

representation and classifier training are required to be conducted on the training partition. For

example, PCA-based algorithms should construct eigen-faces from the training set. Here, we use

Linear Discriminant Analysis (LDA) [118] to obtain an optimal weighting vector from the training

partition. In the FRGC v2.0 dataset, there are a total of 943 3D images in the training partition.

Let S = (s1, s2, . . . , sn) denote a score vector, where n is the number of facial regions (n ≤ 10

in our experiments). Each si is the matching score of i-th region, generated from a pair of images.

The LDA is a projection from the original score vector S ∈ R
n to final matching score S̃ ∈ R.

S̃ = W T
LDAS (5.1)
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Figure 5.3 ROC performance obtained by using sum rule for information fusion. (a) Comparison
with BEE baseline algorithm and (b) Comparison with single-region algorithm
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where WLDA is the n× 1 weighting vector obtained by solving

WLDA = arg max
W

W TSBW

W TSWW
(5.2)

where SB is the between-class scatter matrix and SW is the within-class scatter matrix.

SB =
2∑

i=1

Ni(mi −m)(mi −m)T (5.3)

SW =
2∑

i=1

∑

Sk∈Si

(Sk −mi)(Sk −mi)
T (5.4)

In Equation (5.3) and (5.4), m is the mean score vector of all the training samples, mi is the

mean score vector of samples belonging to class i, Si denotes the set of samples belonging to class

i, and Ni is the number of training samples in class i. The solution for the criterion Equation (5.2)

is given by

WLDA = S−1
W (m1 −m2) (5.5)

In LDA-based face recognition such as [56], the number of classes is the number of subjects.

Here, we apply LDA on a two class problem, namely match class and non-match class. Match

class contains the score vectors from image pairs of the same person while non-match class is gen-

erated by image pairs of different persons. The LDA provides an optimal projection direction that

maximizes the separation between two classes. Figure 5.4 shows the ROC curves of using LDA.

We observe a significant improvement over the sum rule. The results suggest that the distribution

of training data is important knowledge available for use in constructing a better classifier. We

should also mention the fact that the training partition contains only neutral expressions while the

validation partition contains different expressions. Hence, the distribution of training samples is

expected to be different from the distribution of validation data in the FRGC v2.0 protocol. This
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Figure 5.4 ROC performance obtained by using LDA for information fusion.

also points out a future direction where one could expect performance improvement by including

expression changes in the training samples. The weights obtained by LDA are shown in Table

5.1. From the table, we observe that LDA puts the highest weight on the nose region and the sec-

ond highest one on the forehead region. It indicates that the nose and forehead are the two most

important features in 3D face recognition with variation in expression.

5.2.4 Linear Support Vector Machine

Linear support vector machine (LSVM) is the simplest kind of SVM. It is a linear classifier

with maximum margin. The margin means the width that a decision boundary can be increased

to without contacting a data point. By maximizing margin, it gives us the least chance of making

a misclassification. Consider a set of d-dimensional training data belonging to two classes. The

decision hyperplane and margins are given by
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Table 5.1 The Weights on Selected Regions Obtained by LDA

Number of Weights on selected regions VR

regions #1 #2 #3 #4 #5 #6 #7 #8 #9 ROC-III

9 regions .358 .322 .266 .366 .484 .400 .239 .274 .183 .9045

8 regions .363 .316 .267 .378 .495 .406 .256 .276 0 .8910

7 regions .370 .312 .270 .375 .622 0 .288 .281 0 .8614

6 regions .392 .340 0 .390 .628 0 .299 .304 0 .8918

5 regions .398 .373 0 .392 .667 0 0 .319 0 .8983

4 regions .405 .375 0 .395 .733 0 0 0 0 .8663

3 regions .469 0 0 .437 .767 0 0 0 0 .8133

2 regions .536 0 0 0 .843 0 0 0 0 .8414

1 region 1.00 0 0 0 0 0 0 0 0 .7242

Verification Rate (VR) is measured at the point where False Accept Rate equals 0.1%.

Plus plane = {x : W
T
LSV Mx + b = 1} (5.6)

Decision plane = {x : W
T
LSV Mx + b = 0} (5.7)

Minus plane = {x : W
T
LSV Mx + b = −1} (5.8)

where x,WLSV M ∈ R
d and b ∈ R. The margin width M is defined as the shortest Euclidean

distance between plus and minus plane.

M =
2

‖WLSV M‖
(5.9)
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So, we just need to search for the WLSV M and b with the widest margin. This can be for-

mulated as an optimization problem as follows: given the training data with labels {xk, yk}, k =

{1, . . . , N}, yk ∈ {−1, 1}, xk ∈ R
d,

min ‖WLSV M‖ subject to yk(W
T
LSV Mx + b) ≤ 1 ∀k (5.10)

Note that this formulation consider the cases where data is linearly separable. It can be extended

to linear non-separable cases, which is assumed in our research by taking classification errors into

account.

min ‖WLSV M‖ + C

N∑

k=1

εk (5.11)

subject to

W
T
LSV Mx + b ≥ 1 − εk if yk = 1 (5.12)

W
T
LSV Mx + b ≤ −1 + εk if yk = −1 (5.13)

εk ≥ 0, ∀k (5.14)

where C is a penalty factor assigned by user and εk is classification error. For the data points

that have been classified correctly, their εk is zero. The details about how to solve this optimization

problem are beyond the scope of this paper. Readers may refer to [119] for more detailed discussion

on solving optimization problems.

We use the software package LIBSVM [120] to perform support vector classification. Similar

to LDA, the score vector S is projected along the direction WLSV M to yield the final score.

S̃ = W
T
LSV MS (5.15)
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Figure 5.5 ROC performance obtained by using LSVM for information fusion.

Figure 5.5 shows the ROC curves of fusion by LSVM. The LSVM classification yields similar

performance as LDA but is computationally more expensive. The weights obtained by LSVM are

shown in Table 5.2. Similar to the LDA results, we observe that LSVM puts the highest weight on

the nose region and the second highest one on the forehead region. It confirms the importance of

the nose and forehead in 3D face recognition.

5.2.5 Nonlinear Fusion

The linear fusion schemes described in previous sections can only yield linear decision bound-

aries to separate the matching and non-matching classes. To allow more flexible decision bound-

aries, one can use nonlinear classifiers to combine the matching scores. For example, support

vector machines with nonlinear kernels provide better decision boundaries to fit training data. Re-

call that the decision function for linear SVM has the following form:
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Table 5.2 The Weights on Selected Regions Obtained by LSVM

Number of Weights on selected regions VR

regions #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 ROC-III

10 regions 2.53 1.29 1.42 1.99 2.79 1.88 1.44 1.50 .826 1.03 .9014

9 regions 2.51 1.29 1.49 1.81 2.80 2.10 1.56 1.66 0 1.20 .9014

8 regions 2.28 1.25 1.65 1.89 3.10 2.17 1.87 1.78 0 0 .9028

7 regions 2.45 0 1.78 2.01 3.07 2.29 1.99 1.74 0 0 .9012

6 regions 2.60 0 1.90 1.97 3.70 2.34 2.24 0 0 0 .9030

5 regions 3.04 0 0 2.32 3.96 2.51 2.25 0 0 0 .8978

4 regions 3.68 0 0 0 4.37 2.51 2.31 0 0 0 .8715

3 regions 3.96 0 0 0 5.24 2.82 0 0 0 0 .8656

2 regions 4.31 0 0 0 6.91 0 0 0 0 0 .8439

1 region 0 0 0 0 1 0 0 0 0 0 .7242

Verification Rate (VR) is measured at the point where False Accept Rate equals 0.1%.

f(x) =

N∑

i=1

yiαixT xi + b (5.16)

where x denotes a feature vector to be classified, xi denote support vectors, yi denotes the labels

of support vectors, N is the total number of support vectors, αi denote Lagrange multipliers and

b is a bias term. The values of the Lagrange multipliers {αi}, support vectors {xi} and bias b are

obtained from training data.

To obtain a nonlinear decision boundary, usually resulting in better classification results, one

can replace the inner product xT xi with a nonlinear kernel K(x, xi).

f(x) =
N∑

i=1

yiαiK(x, xi) + b (5.17)
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The basic idea behind the nonlinear SVM is to map the original feature vectors to a higher-

dimensional feature space by using a kernel function. The data points might become linearly

separable after mapping to a higher-dimensional feature space. There are various kinds of nonlin-

ear kernels. The most common kernel functions are polynomial, Radial Basis Function (RBF) and

Sigmoidal kernels.

Polynomial Kernel : K(x, xi) = (1 +
xT xi

σ2
)p, p > 0 (5.18)

RBF Kernel : K(x, xi) = exp

{
−

‖x − xi‖
2

2σ2

}
(5.19)

sigmoidal Kernel : K(x, xi) =
1

1 + exp{− xT xi+b
σ2 }

(5.20)

Again, we use the software package LIBSVM [120] to train SVMs with different kernel func-

tions. The decision boundaries created by polynomial and RBF SVMs are shown in Figure 5.6.

Evidently, nonlinear classifiers are more capable in fitting training data than linear classifiers. How-

ever, nonlinear fusion schemes do not produce significantly better performance on the validation

partition of FRGC 3D dataset. One possible reason for this is that there is only neutral expressions

in the training partition while expression changes exist in the validation partition.

Table 5.3 and 5.4 summarize the results of two nonlinear fusion schemes, namely polynomial

SVM and RBF SVM. At a false accept rate of 0.1%, nonlinear fusions do not yield significantly

better performances than those of linear fusions. Note that fusion by RBF SVM results in perfor-

mance degradation when the number of regions is high, combining 9 or 10 regions in particular.

5.2.6 Discussion

The experiments described above suggest that the LDA method performs better than the sum

rule. For ROC III, the Verification rate of LDA and sum rule are 90.04% and 87.96%, respectively

(at FAR = 0.1%). The LDA takes the distribution of training data into account so that we can

construct a better classifier. By doing fusion at the score level, the FAR can be fixed and then the
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Figure 5.6 Nonlinear fusions of region #1 (horizontal axis) and region #5 (vertical axis).
Decision boundaries (black lines) and marginal boundaries (green and blue lines) are created by

using training partition of FRGC v2.0 dataset. (a) Polynomial SVM, (b) RBF SVM.
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Table 5.3 The Verification Rates of Fusion by Polynomial SVM

Number of VR @ FAR = 0.1 %

regions ROC-I ROC-II ROC-III

2 regions .8617 .8540 .8473

3 regions .8822 .8741 .8652

4 regions .8846 .8784 .8701

5 regions .9122 .9056 .8980

6 regions .9139 .9085 .9025

7 regions .9141 .9077 .9011

8 regions .9165 .9105 .9036

9 regions .9138 .9073 .9005

10 regions .9131 .9063 .8982

Table 5.4 The Verification Rates of Fusion by RBF SVM

Number of VR @ FAR = 0.1 %

regions ROC-I ROC-II ROC-III

2 regions .8607 .8534 .8453

3 regions .8810 .8734 .8641

4 regions .8825 .8754 .8672

5 regions .9124 .9057 .8985

6 regions .9117 .9065 .9000

7 regions .9130 .9068 .8998

8 regions .9062 .9025 .8978

9 regions .8772 .8823 .8854

10 regions .8667 .8713 .8761
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verification rate can be computed in both cases. For FRGC experiment 3s, the proposed algorithm

achieves similar performance as the best results in the recent FRGC report [121].

Figure 5.7 and 5.8 show the distributions of matching scores for the selected regions before

score-level fusion. The score distributions of combining 10 regions by sum rule and LDA are

shown in Figure 5.9. It can be seen from this figure that the separability of two classes has been

improved as compared to that of the classifiers based on single-regions. The result indicates that

the multi-region system performs better than any of the single-region systems.

Intuitively, facial features are different in terms of their importance in face recognition. To

explore the relative importance of each region, we began with 10 regions and then leave one region

out at each experimental run. After removing one region, we compute the optimal weights on

remaining regions by LDA/LSVM. Table 5.1 and 5.2 contains the weights obtained by LDA and

LSVM respectively. We first observe that using overlapped regions does not improve performance,

i.e. region 9 and 10 do not have significant contribution. These tables show a clear difference in the

values assigned to each region. The results suggest that nose has the highest contribution followed

by forehead. Note that the combination of nose and forehead can achieve a verification rate of

84% at false accept rate of 0.1%. This is a striking new evidence since psychological experiments

typically indicate that eyes are the most important followed by mouth and the nose [122].

How could we reasonably explain this finding? One possibility is that the human visual system

relies on the projection of a face , i.e. 2D texture image, rather than face itself, which is a 3D object,

in identifying a face. This new evidence might also explain why and how 3D face recognition can

help improve the performance of 2D face recognition systems. The outputs of 2D face recognition

and 3D face recognition may not agree with each other when classifying a face because they are

dominated by different facial regions. Hence, the error made by one of them might possibly be

covered by the other.
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Figure 5.7 Score distribution of region 1,2,3,4,5,6. Higher score means more similar. (dashed
lines denote the Gaussian approximation of score distribution).
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Figure 5.8 Score distribution of region 7,8,9,10. Higher score means more similar. (dashed lines
denote the Gaussian approximation of score distribution).

5.2.7 Sensitivity to Facial Expressions

In general, facial expressions could be classified by types (smile, angry, etc.) or strength (neu-

tral, weak, strong). For the purpose of recognition, we are concerned about the performance at

different levels of expression strengths, not the types. In this experiment, facial expressions are

classified into 3 categories: neutral, small and large. The neutral category includes the face pos-

tures without obvious expressions, while small means natural expressions such as moderate smiles.

The large category contains the faces with extreme expressions. In many verification/identification

scenarios, it is reasonable to assume cooperation from subjects. If a subject is making a weird ex-

pression, we can ask him/her to be more cooperative.
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Figure 5.9 Score distribution of combining 10 regions. (a) Sum rule. (b) LDA.
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The validation partition of the FRGC v2.0 dataset, containing 4007 images, is manually clas-

sified into these three categories. The manual labeling of images were performed by Geometrix

Inc. [123] and the labeling results are available to the research community. The percentage of

neutral, small and large expressions are 60%, 20% and 20%, respectively. Figure 5.10 shows the

ROC curves of the following experimental settings (from top to bottom): First, neutral images

are matched with neutral images (60% vs 60%). Second, neutral images are matched with the

union of neutral and small categories (60% vs 80%). Third, neutral images are matched with all

4007 images (60% vs 100%). Fourth, all 4007 images are matched with all 4007 images (100% vs

100%).

From these experiments, we observe that performance degradation is related to the strength

of expressions. With neutral and small expressions, our algorithm can achieve verification rate of

96.90% at 0.1% false accept rate (the second curve from top). This is the performance that can

be expected with cooperative subjects, i.e. natural expressions are allowable but not exaggerated

ones. The lower two curves show significant performance degradation due to extreme expressions.

5.3 Summary

A novel 3D face recognition system, which integrates multiple regions of a facial surface,

is proposed. The proposed system overcomes the limitations of single-region algorithms. The

performance improvement is due to the combination schemes which generate a final matching

score with a higher quality than those based on a single region. Experiments indicate that the

LDA method performs better than the sum rule. The reason is that the single-region sub-systems

do not have similar performance. If the individual classifiers do not have equal performance, we

should assign weights to them. The LDA method provides optimal weights for combining multiple

classifiers resulting in better performance than the sum rule. LSVM provides another optimal

solution for information fusion. The fusion by LSVM achieves similar recognition performance
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as by LDA, but the LSVM is computationally more intensive. Results on the FRGC v2.0 dataset

demonstrate that our multiple-region algorithm is robust in the presence of facial expressions.
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Chapter 6

Conclusion and Future Works

6.1 Summary of the Work

This dissertation focused on the issue of feature extraction and presents a novel family of geo-

metrically invariant features. In general, a pattern recognition problem divides into two parts : fea-

ture extraction and classification. The goal of feature extraction is to find a good representation so

that classification can proceed easily. Unlike classification, which is usually problem-independent,

feature extraction is closely related to the problem of interest. For example, a good feature in ef-

forts to identify fingerprints would be very likely of little use in efforts to recognize hand-written

letters. In order to develop an efficient and reliable feature extraction scheme, knowledge of the

problem domain is required. Hence, we discussed many important cases, including 2D and 3D

shape recognition, and demonstrate performance improvement by using the proposed features.

The following four points summarize the key contributions in my dissertation:

• In chapter 2, we presented a systematic approach for constructing invariant features. We

detailed four important cases: namely, curve under rigid transformation, curve under affine

transformation, surface under rigid transformation, and surface under affine transformation.

For each case, we explicitly derived the corresponding summation invariants. We also pre-

sented an analytical derivation of the mean squared error for a simple case. The error anal-

ysis served mainly to shed light on what one can expect from the calculation of summation
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invariants in the presence of noise. On the basis of error analysis and the numerical simula-

tion, we observed that the summation invariants can achieve acceptable precision in practical

situations.

• In chapter 3, we addressed the problem of 2D shape matching. In the literature [33–36],

researchers have commonly used curvature as a geometric feature. However, theoretical

analysis [25, 26] also has shown that accurate estimation of curvature can occur only under

favorable conditions. Therefore, it is highly desirable to have a reliable feature that can

replace the role of curvature in general 2D shape analysis problems.

We first demonstrated that summation invariants have a better discriminating ability and

noise immunity than other shape representations. These other shape representations are

wavelet invariants and integral invariants. We used shape retrieval as an example to show

that, without other modification, summation invariants can replace curvature.

• Researchers have invested a substantial amount of effort in studying the problem of auto-

matic face recognition. In chapter 4, we approached the challenges in face recognition by

introducing summation invariants. We first developed a face recognition algorithm that com-

bines the FRGC baseline algorithm with summation invariant features. In the proposed algo-

rithm, representation of a facial surface uses either a curve Euclidean summation invariant,

ηi,j, or a surface Euclidean summation invariant, κi,j,k, which are calculated in a semi-local

manner. The advantage of using multiple summation invariant features is the complementary

nature of the information being extracted. By extracting features through multiple summa-

tion invariants, we significantly improved the integrity of the face recognition algorithm.

• It is reported in the literature [42, 43] that the performance of face recognition algorithms

drops dramatically owing to expression changes. We approached the issue of facial expres-

sion variations in 3D face recognition by using smaller facial regions that are relatively rigid

across different expressions. Also, adaptive fusion of multiple regions offers an efficient
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tool for improvements to classification performance. For example, the mouth region suffers

severe performance degradation owing to smiling, but the forehead region is unaffected. In

chapter 5, we presented a multi-region face recognition algorithm and showed how it can im-

prove robustness in the presence of facial expressions. We studied several fusion techniques

and compared their performances. We validated the proposed algorithm by using the FRGC

3D dataset, totaling 4950 3D scans of 466 subjects. The proposed multi-region face recogni-

tion algorithm performed significantly better than the PCA-based FRGC baseline algorithm

in situations where the probe set contained neutral and non-neutral expressions.

6.2 Future works

We conclude this dissertation by suggesting some directions along which the research presented

here might be extended.

• 2D shape alignment: In many of the current 2D shape alignment algorithms, such as [1,40],

there are two serious drawbacks. First, curvature is used as a feature in the problem formu-

lation , and this state-of-affairs is self-contradictory. More specifically, the goal of 2D shape

alignment is to establish nonrigid correspondence, but the curvature is invariant only under

rigid transformation. It would be more suitable to use affine invariants, which allow for lin-

ear deformation in the case of nonrigid alignment. In this dissertation, we introduced a set of

affine summation invariants that would naturally fit in the algorithms for nonrigid alignment.

Second, finding the optimal alignment is based on L2 norm optimization, which resulted in

local extrema. So, one has to find the optimal solution by conducting an exhaustive search,

using a technique like dynamic programming. It has been shown in [124] that many vision

problems can be modified as L∞ optimization problems and the corresponding cost function-

als have a single extremum. By formulating curve alignment as a L∞ optimization problem,

one could find the optimal solution more efficiently without having to conduct an exhaustive

search.
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• Fully automatic 3D face recognition: Currently, our face recognition algorithm relies on

manually selected fiducial points. It is highly desirable that, without any human interference,

a face recognition algorithm can automatically recognize faces. There are many approaches

to automatic face alignment and feature extraction. However, the effects that would arise

from an addition of automatic alignment to the proposed algorithm remain a matter for fur-

ther investigation.

• Facial Expressions: The analysis and the modeling of facial expressions have attracted lots

of attention [125–127]. These works focus mainly on expression recognition: i.e. identify-

ing facial expressions such as those that convey happiness, anger, or disgust. On the other

hand, face recognition under expression variations is still an open problem and relatively un-

addressed so far. Even though expression recognition and face recognition under expression

variations are two different topics, their results could be complementary to each other. For

example, knowledge of expression modeling could yield useful information for the develop-

ment of an expression-invariant face recognition algorithm. Furthermore, the way in which a

person poses an expression presents another source of face biometrics. How to use temporal

information embedded in facial expressions is an interesting topic for further investigation.

• Face recognition under partial occlusion: 3D face recognition is promising because it

can help researchers to avoid many of the 2D image-based recognition system’s challenging

issues, such as pose and illumination variations. However, most of the current 3D face

recognition systems require the 3D scan of a facial surface to be a frontal view, which is not

feasible in many real world applications. To make the proposed face recognition system more

practical, we need to revise many building blocks in our current system, especially those that

rely on the frontal-view assumption. After this revision, the input would be a 3D facial scan

taken at an arbitrary viewpoint, and the system could match a partial 3D scan against the

whole gallery set. Of course, to develop this kind of system, we need a dataset of 3D facial

surfaces with large pose changes. Unfortunately, the publicly available 3D datasets contain
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only frontal view 3D scans. As an important extension of the current project, we would like

to submit a proposal for purchasing our own 3D scanner.
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