ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

Face Recognition: A Tutorial

Wen-Yi Zhao wzhao@sarnoff.com Sarnoff Corporation Princeton, NJ 08543

Face Recognition: A Literature Survey. W. Zhao, R. Chellappa, A. Rosenfeld, and J. Phillips

University of Maryland Tech. Rep. CS-TR-4167R, 2002/ACM Computing Survey, Vol. 35, Dec, 2003

Application I: Robot Pets

Sony Aibo to spread more puppy love

By John G. Spooner Staff Writer, CNET News.com October 10, 2002, 7:09 AM PT

Sony is planning to train Aibo, its robot dog, to be able to pick you out of a crowd.

Sony's Entertainment Robot America division said Tuesday it will introduce Aibo Recognition, a new application for its newest Aibo ERS-210A and ERS-210 models. The software will grant the mechanical dog the ability to recognize its owner's name, voice and **face**, as well as automatically recharge itself.

Application II: Cell Phone

March 27, 2002 Face Recognition, via Cell Phones By Ryan Naraine

Chicago-based telecoms equipment maker Motorola, Inc. has announced plans to put face recognition technology into Java-enabled mobile phones.

In partnership with Visionics Corp. (Quote, Company Info) and Wirehound LLC, Motorola said the application was being developed specifically for law enforcement agencies.

The announcement, made at the JavaOne Developer Conference in San Francisco, said the application would use Visionics' FaceIt ARGUS as the delivery platform for facial recognition capabilities.

Motorola would also install Wirehound's Birddog software on the its i95cl phone, a J2ME technology-enabled mobile phone with a color display.

The Facelt ARGUS system would automatically find **faces** in a field of view and search them against a mug shot database. "Upon finding a match, the Birddog component generates a wireless alert to the phones used by mobile law enforcement officials, who are then able to verify the identity of the subject," the company said.

Application III: Access Control

The SmartGate installation at Sydney International Airport made major use of **Cognitec's** software for automatic border control Samsung's Magicgate: A Door Lock Control System using Face Verification Technology

Wen-Yi Zhao: Face Recognition

Cast Shadow

Application IV: Entertainment

Image manipulation

Blanz & Vetter

New Illumination

Texture Extraction & Facial Expression

Emily?

Family Photo Album By Microsoft

Outline

- Introduction
- Relevant Psychophysics/Neuroscience Issues
- Still-Image Face Recognition
- Video-Based Face Recognition
- Illumination & Pose Problem
- 3D Face Recognition
- Performance Evaluation (FRVT 2002)
- Challenges and Directions

ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

Introduction

Task of Face Recognition

Why Face Recognition?

•Face is the personal communication center

- Carrying ID (Face recognition)
- Speech recognition (enhanced by lipreading)
- Emotion through facial expression and voice

Suitable for numerous applications

- User-friendly (v.s. finger-print, iris recognition)
- Natural human computer interface (virtual reality, games, robotic dogs)

How to Recognize Faces?

- How human perceives faces?
 - Psychophysics and neuroscience study (Darwin, 1872)
- How machine perceives faces?
 - From simple geometric profiles to complex features (Galton)
- We need to apply all relevant disciplines
 - Psychology: providing guidance/lesson
 - Image/video processing: pre-processing, feature
 - Pattern recognition/Learning/neural networks: classifier
 - Computer vision & Computer graphics: 2D-3D-2D

Available Commercial Systems

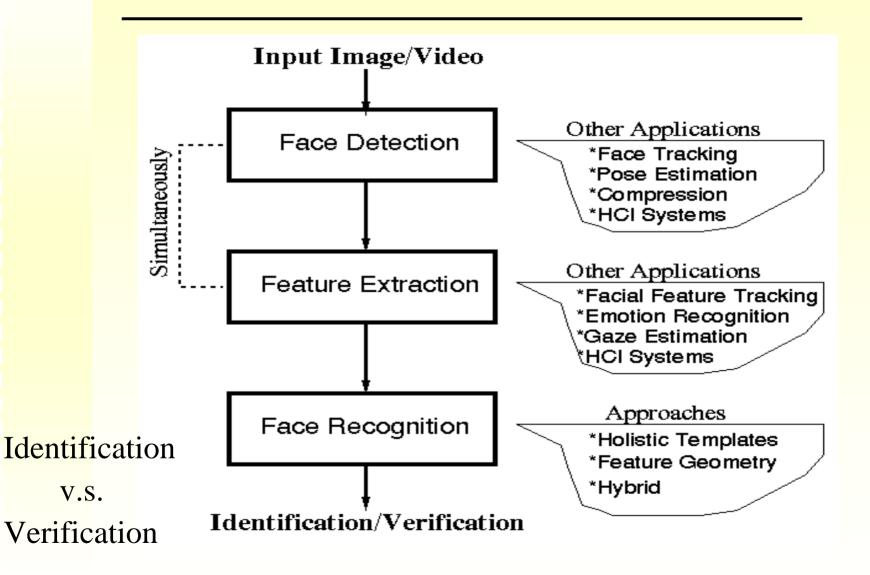
FaceIt from Visionics Viisage Technology FaceVACS from Plettac FaceKey Corp. Cognitec Systems Keyware Technologies Passfaces from ID-arts Image Ware Sofware Evematic Interfaces Inc. **BioID** sensor fusion Visionsphere Technologies **Biometric Systems**, Inc. FaceSnap Recoder SpotIt for face composite

www.Facelt.com www.viisage.com www.plettac-electronics.com www.facekey.com www.cognitec-systems.de www.keywareusa.com www.id-artss.com www.iwsinc.com www.eyematic.com www.bioid.com www.visionspheretech.com/menu.htm www.biometrica.com www.facesnap.de/htdocs/english/index2.html spotit.itc.it/SpotIt.html

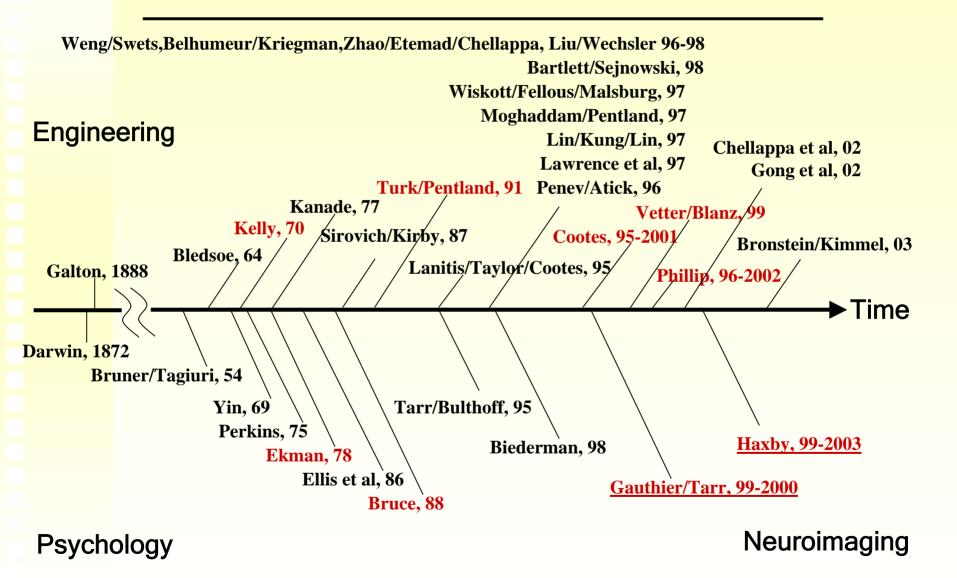
Typical Applications

Areas	Specific Applications
Entertainment	Video Game/Virtual Reality/Training Programs Human-Computer-Interaction/Human-Robotics Family Photo Album
Smart Cards	Drivers' Licenses/Passports/Voter Registrations/Entitlement Programs Welfare Fraud/Passports/Voter Registration
Information Security	TV Parental control/Desktop Logon/Personal Device (Cell phone etc) Logon/Database Security/ Medical Records/Internet Access
Law Enforcement & Surveillance	Advanced Video Surveillance/CCTV Control Shoplifting/Drug Trafficking/Portal Control

Generic System Configuration



Brief History



ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

Relevant

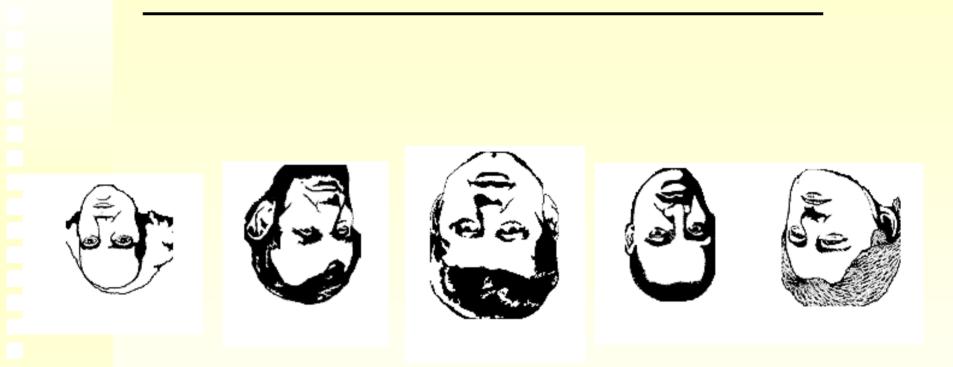
Psychophysics/Neuroscience Issues

Psychophysics Issues Relevant to Machine Recognition

• <u>Is face perception the results of holistic/configural or</u> <u>local feature analysis</u>? Is it a dedicated process?

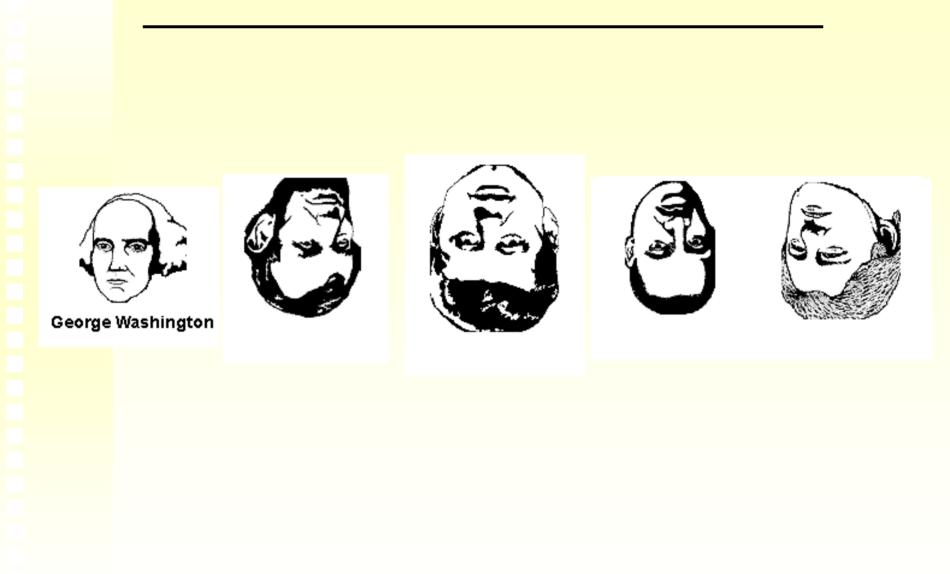
 \rightarrow Build a special or generic system

- Ranking of significance of facial features
 Different weights for features
- Viewpoint-invariant or view-dependent recognition
 Handle pose problem
- Effect of lighting change
 → Shape from shading
- Movement and face recognition
 - → Favor video based recognition
- Role of race/gender/familiarity
 - → Suggest adaptive system



Prof. Eric H. Chudler Dept. of Anesthesiology University of Washingtonc

European Conference on Computer Vision, May 2004: T4 Tutorial



George Washington

Abraham Lincoln

Abraham Lincoln

John F. Kennedy

European Conference on Computer Vision, May 2004: T4 Tutorial

Abraham Lincoln

John F. Kennedy

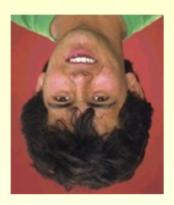
Martin L. King, Jr.

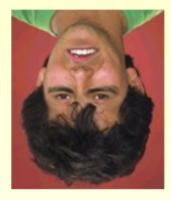
Abraham Lincoln

John F. Kennedy

Bill Clinton

More Inverted Faces

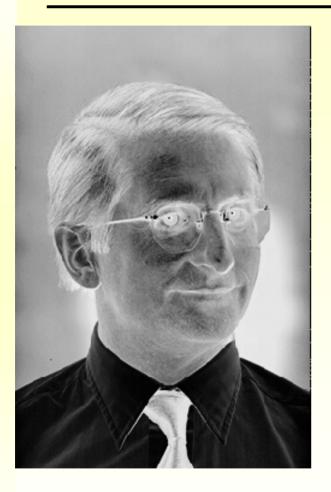


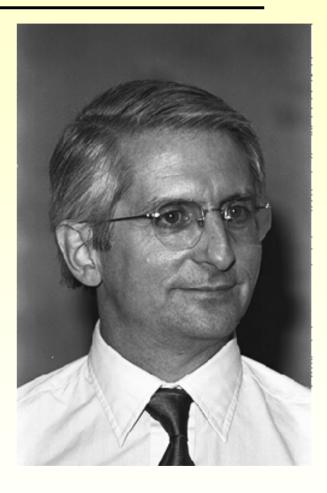


Prof. Eric H. Chudler Dept. of Anesthesiology University of Washington

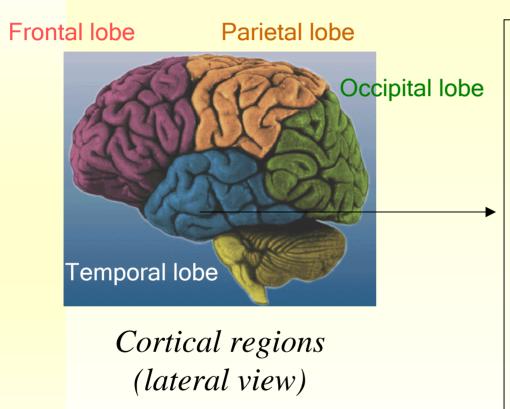
Wen-Yi Zhao: Face Recognition

Negated Faces





Neuroimaging Study



Single-cell recording studies

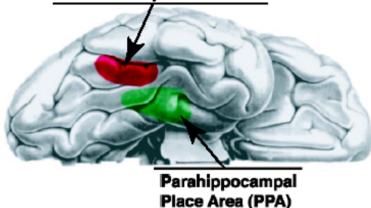
•Leads to the discovery of individual neurons that are tuned to faces and other objects

Structural Studies

•Leads to large-scale spatial organization for specialization within the ventral object vision pathway

The Functional Architectures

Fusiform Face Area (FFA) / Visual Expertise

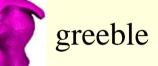


Schematic diagram illustrating the location of FFA and PPA on the ventral surface of the right temporal lobe

Model I:

•specialized areas for representing specific categories of stimuli: FAA and PPA

Model II:



•different areas are specialized for different types of perceptual processes: FAA is for expert recognition, not just face

Model III:

•representations of faces and different categories of objects are widely distributed and overlapping

"Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex," J. Haxby, M.I. Gobbini, M.L.Furey, A. Ishai, J.L. Schouten, and P. Pietrini, *Science*, Vol. 293, pp. 2425-430, 2001

Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

Distributed Representations of Faces and Objects

Even

Runs

Correlations

-0.28

-0.12

-0.17

0.29

-0.10

-0.67

-0.40

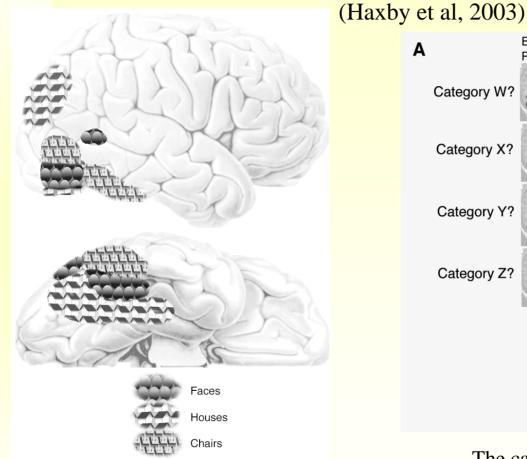
-0.43

-0.17

Odd Runs 0.04

-0.36

-0.47



Locations of regions in occipitotemporal cortex that respond preferentially to faces, houses, and chairs The category that a subject is viewing can be identified by the spatial pattern of response in ventral temporal cortex. ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

Still-Image Face Recognition

Face Recognition from Still Images

1. Face Detection and Feature Extraction

- Summary
- 2. Recognition from Intensity Images
 - Categorization
 - Brief description of representative work
- 3. Summary/Discussion
 - Status of machine face recognition
 - Open research issues

Face Detection Summary

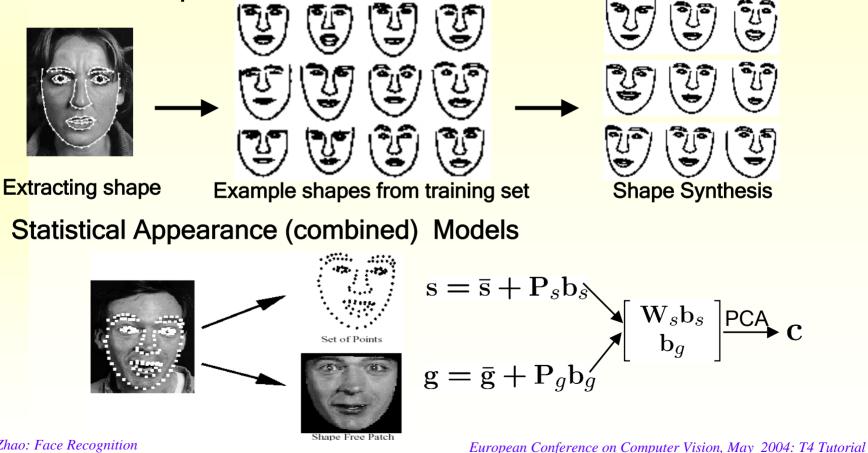
- Up to the mid 90's: single-face segmentation
 - Whole-face template
 - Deformable feature-based template
- More Recently
 - Image-/appearance-based methods: extensive training on large samples
 - Multiview-based detection of 3D rotated faces
- Improve detection systems
 - true positives (detection rate), false positives
 - Re-training on false positive samples
 - Real-time (Viola & Jones'01: AdaBoost)

Facial Feature Extraction Summary

- Important for both detection and recognition
- Three types of approaches
 - Generic features: lines, curvatures, etc.
 - Feature templates: mouth, nose, eyes
 - Structural matching: e.g., ASM
- Challenging issues:
 - Distortion of features under large pose
 - "Restoration" of invisible features

Active Shape Model/Active Appearance Model (Cootes, Taylor, et. al.'95/00/01)

Statistical Shape Models



Wen-Yi Zhao: Face Recognition

Active Statistical Face Models

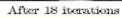
Searching & model fitting (active)

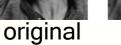
Active Shape Model (ASM)

Failure example of search using ASM

Normal example of search using ASM

After 6 iterations





Active Appearance Model (AAM)

Multi-resolution search using AAM

European Conference on Computer Vision, May 2004: T4 Tutorial

Recognition from Intensity Images

High-level Categorization

- 1. Holistic matching methods
 - Classification using whole face region
- 2. Feature-based (structural) matching methods
 - Structural classification using local features

3. Hybrid Methods

• Using local features and whole face region

Still Face Recognition Systems

Approach	Representative Works
Holistic methods	
Principal Component Analysis (PCA)	
Eigenface	Direct application of PCA
Fisherface/Subspace LDA	FLD on eigenspace
SVM	Two-class problem based on SVM
ICA	ICA-based feature analysis
Other Representations	
LDA/FLA	FLD/LDA on raw images
PDBNN	Probabilistic decision based NN
Feature based methods	
Pure geometry methods	Earlier methods, recent methods
Dynamic Link Architecture	Graph matching methods
Convolution Neural Network	SOM learning based CNN methods
Hybrid methods	
Modular eigenface	Eigenface & eigenmodules
Hybrid LFA	Local & global feature method
Component-based	Face region and components

Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

Holistic Approaches PCA for face images

Why principal component analysis (PCA)?

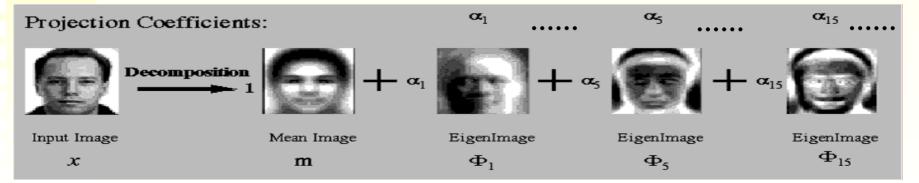
- **Statistical redundancy for natural images** (Ruderman 94) Especially for normalized face images
- **<u>Reduced sensitivities to noise</u>**: geometric and photometric

How to compute principal components?

$$C\Phi = \Phi\Lambda$$

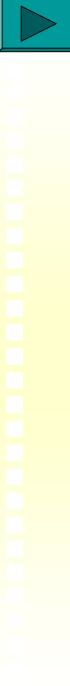
PCA reconstruction

$$\mathbf{x} \approx \mathbf{m} + \sum_{i=1}^{M} \alpha_i \Phi_i$$



Wen-Yi Zhao: Face Recognition

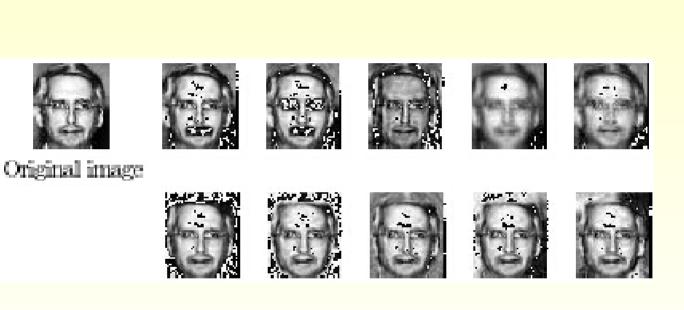
European Conference on Computer Vision, May 2004: T4 Tutorial



Holistic Approaches PCA for face images

Electronically Modified images

Holistic Approaches PCA for face images

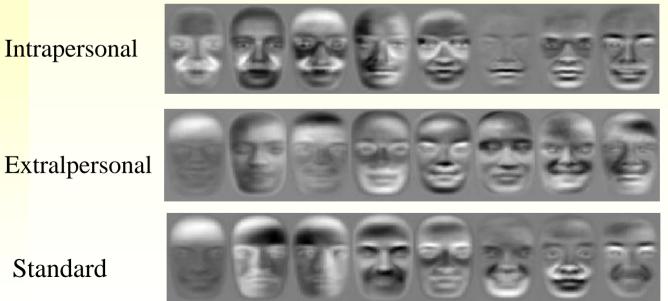


PCA reconstructed images

Holistic Approaches Probabilistic eigenface

Probabilistic Eigenface (Moghaddam and Pentland'97)

- Making Bayesian practical by converting a multi-class problem into a two-class problem
- Intrapersonal class and extrapersonal class based on image difference $\Delta = I_1 - I_2$
- Performance: top 3 in the FERET test



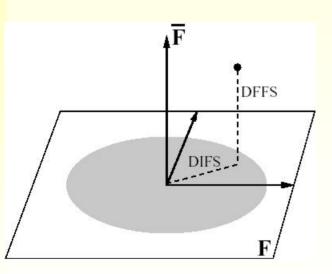
Standard

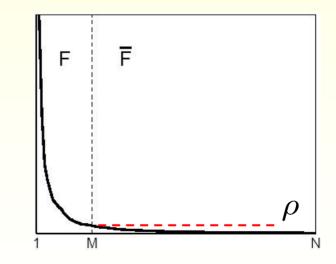
Wen-Yi Zhao: Face Recognition

Holistic Approaches Critical parameter estimation

Efficient Technique for Probability Estimation (Moghaddam and Pentland'97, Sung ang Poggio'97)

- Decomposition into the principal subspace F and its orthogonal complement subspace \overline{F}
- Estimating covariance in F
- Estimating a stable average eigenvalue ρ in \overline{F}





Holistic Approaches FLDA for Face Recognition

LDA Face Recognition

(Swets and Weng'96: PCA + LDA)
(Etemad and Chellappa'97: Linear discriminant analysis)
(Belhumeur, Hespanha and Kriegman'97: Fisherface)
(Zhao and Chellappa'98: Regularized subspace LDA)
(Liu and Wechsler'98: Enhanced FLDA)
(Chen et al'00: LDA with singular within-class scatter matrix)
(Yu and Yang'01: Direct LDA removing null space of between-class scatter matrix)

Why LDA?

• Improve classification performance when more than one samples are available per class

How to carry out LDA?

Objective function

$$J(W) = \frac{|W^T S_b W}{|W^T S_w V}$$

$$S_w = \sum_{i=1}^{K} Pr(\omega_i)C_i$$

$$S_b = \sum_{i=1}^{K} Pr(\omega_i)(\mathbf{m}_i - \mathbf{m}_0)(\mathbf{m}_i - \mathbf{m}_0)^T$$

Wen-Yi Zhao: Face Recognition

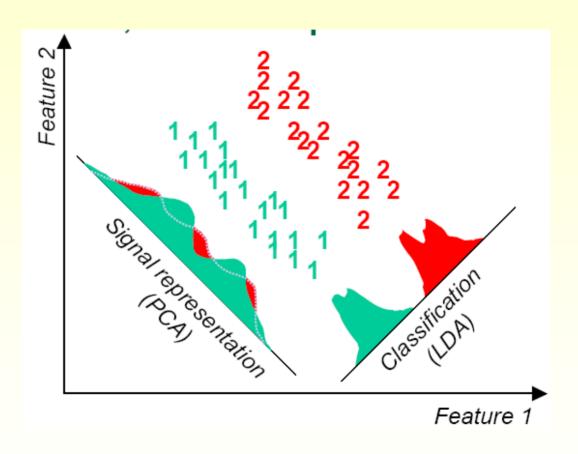
European Conference on Computer Vision, May 2004: T4 Tutorial

Solution

 $S_b W = S_w W \Lambda_L$

 $\mathbf{z} \stackrel{\checkmark}{=} W^T \mathbf{x}$

Holistic Approaches Why LDA for Classification?



Holistic Approaches Regularized Subspace LDA

Regularized Subspace LDA (Zhao and Chellappa'98)

- Unique choice of a universal subspace dimension
- Weighted distance
- Regularized S_W matrix (two reasons) $\hat{S}_w = S_w + \delta I$
- Performance: top 3 in the FERET test

The Sequential Procedure

- Removing within-class variations (whitening) $S_w W_w = W_w \Lambda_w \longrightarrow y = \Lambda_w^{-1/2} W_w^T x$
- Maximizing class separation (eigenvalue)

$$S_b^y W_b = W_b \Lambda_b \iff S_b^y = \sum_{i=1}^K Pr(\omega_i)(\mathbf{m}_i^y - \mathbf{m}_0^y)(\mathbf{m}_i^y - \mathbf{m}_0^y)^T$$

• The final mapping matrix (not orthogonal)

$$W = W_w \Lambda_w^{-1/2} W_b \quad \bigstar \quad \mathbf{z} = W_b^T \mathbf{y} = W^T \mathbf{x}$$

(Fugana'91)

Holistic Approaches Global Face Dimension

The use of a face subspace is not just for dimensionality reduction!

A fixed universal subspace 300 is chosen based on <u>the</u> <u>characteristics of eigenimages</u> based on 1078 FERET images. (It was reported to be around 400 based on 5000 images. Penev and Sirovich, AFGR'00)

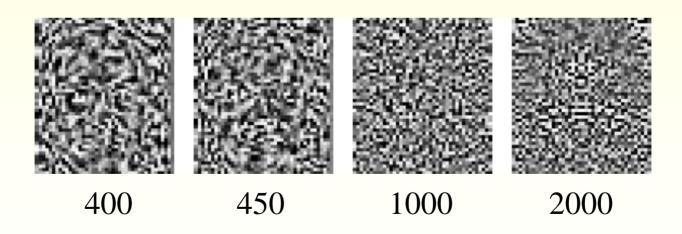
One interesting implication: image size could be any size as long as it is larger then 300.

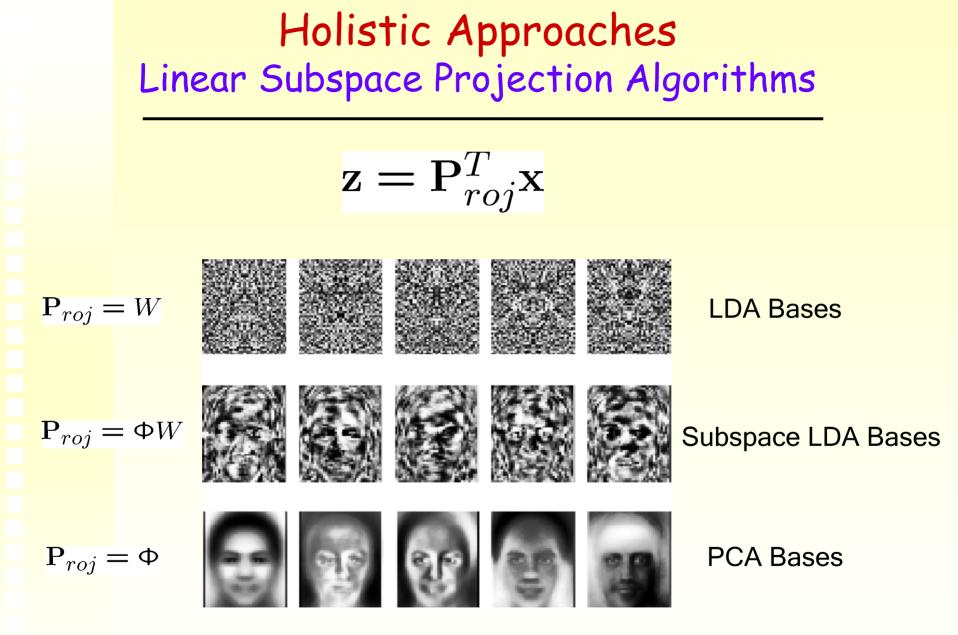
D im/Size	96x 48	48 x 42	24 x 21	19 x 17	12 x 11
132	X	Х	Х	Х	84.34
200	68.69	71.30	70.43	76.52	Х
300	81.74	85.21	86.08	90.43	Х
400	68.69	71.30	69.56	Х	Х
500	67.83	66.96	71.30	Х	Х
Experimental Verification					

Experimental Verification

Holistic Approaches Global Face Dimension

15 100 200 250 300





Handling small size sample: the null space of S_w contains important discriminant information

- LDA in the null space of S_w only (Chen et al 00) $S_w W_w^{null} = 0$ $\mathbf{y} = W_w^{null^T} \mathbf{x}$
- Efficient direct LDA (Yu and Yang'01): Removing null space of S_b $S_bW_b = W_b\Lambda_b \implies \mathbf{y} = \Lambda_b^{-1/2}W_b^T \mathbf{x} \implies S_w^y W_w = W_w\Lambda_w \implies \mathbf{z} = W_w^T \mathbf{y}$
- Augment S_w (Zhao and Chellappa'98, Hong and Yang'91):

 $\hat{S}_w = S_w + \delta I$ OR replacing zero eigenvalue with a small value

Handling small number of classes: taking full information

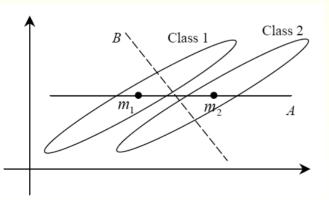
• Discriminant Component Analysis (Zhao'00, Okada and Tomita'85)

• Starting from the full signal space, we first select the optimal linear vector/basis W_1 based on LDA criterion. Then we project the signal into the complementary subspace and select the optimal linear vector in that subspace. Repeat this until full bases are constructed.

Handling non-linearity: kernel methods

Holistic Approaches What matters for LDA Face Recognition?

- Face subspace is important for extracting stable features; hence, better generalization capability.
- 2. Pay attention to details:
 - How to compute matrices and solve eigenvalues?
- 3. Understand the limitations of different algorithms

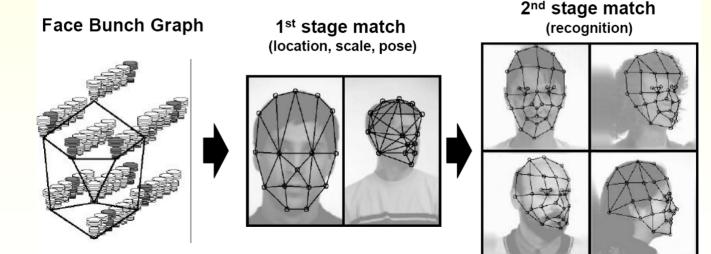


Information lost in Direct LDA

Feature based Approaches DLA, EGM and EBGM

DLA, EGM, EBGM (Lades, Wiskott, and Malsburg, etc.'93,97,98,99)

- **Comparing jets:** $S_{\phi}(\mathcal{J}, \mathcal{J}') = \frac{\sum_{j} a_{j} a'_{j} \cos(\phi_{j} \phi'_{j} d\vec{k}_{j})}{\sqrt{\sum_{j} a_{j}^{2} \sum_{j} a'_{j}^{2}}}$
- Graph based on local feature matching & global structure $S_{\mathcal{B}}(\mathcal{G}^{I}, \mathcal{B}) = \frac{1}{N} \sum_{n} \max_{m} (S_{\phi}(\mathcal{J}_{n}^{I}, \mathcal{J}_{n}^{\mathcal{B}_{m}})) - \frac{\lambda}{E} \sum_{e} \frac{(\Delta \vec{x}_{e}^{I} - \Delta \vec{x}_{e}^{\mathcal{B}})^{2}}{(\Delta \vec{x}_{e}^{\mathcal{B}})^{2}} \quad \text{where} \\ \Delta \vec{x}_{e} = \vec{x}_{n} - \vec{x}_{n'}$
- Recognition: $S_{\mathcal{G}}(\mathcal{G}^{I}, \mathcal{G}^{M}) = \frac{1}{N'} \sum_{n'} S_{a}(\mathcal{J}_{n'}^{I}, \mathcal{J}_{n'}^{\mathcal{M}})$
- Performance: top 3 in the FERET test

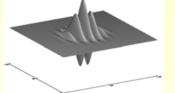


Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

Feature based Approaches Gabor wavelets and image graphs

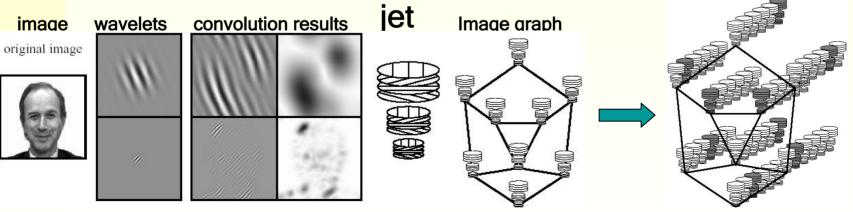
Gabor wavelets: biologically motivated convolution kernels in the shape of plane waves restricted by a Gaussian envelope function (Daugman'88)



$$\psi_j(\vec{x}) = \frac{k_j^2}{\sigma^2} \exp(-\frac{k^2 x^2}{2\sigma^2}) [\exp(i\vec{k}\vec{x}) - \exp(-\sigma^2/2)]$$

(\sigma = 2\pi)

Jets
$$\{J_i\}$$
: $J_i(\vec{x}) = \int I(\vec{x}')\psi_j(\vec{x}'-\vec{x})d\vec{x}' = a_j \exp(i\phi_j)$
wave vectors: $\vec{k}_j = \begin{pmatrix} k_\nu \cos \theta_\mu \\ k_\nu \sin \theta_\mu \end{pmatrix}, k_\nu = 2^{-\frac{\nu+2}{2}}, \theta_\mu = \mu_{\overline{8}}^{\pi}$
 $(\nu = 0, \dots, 4, \mu = 0, \dots, 7, j = \mu + 8\nu)$



Graph representation

Stack-like bunch graph

Wen-Yi Zhao: Face Recognition

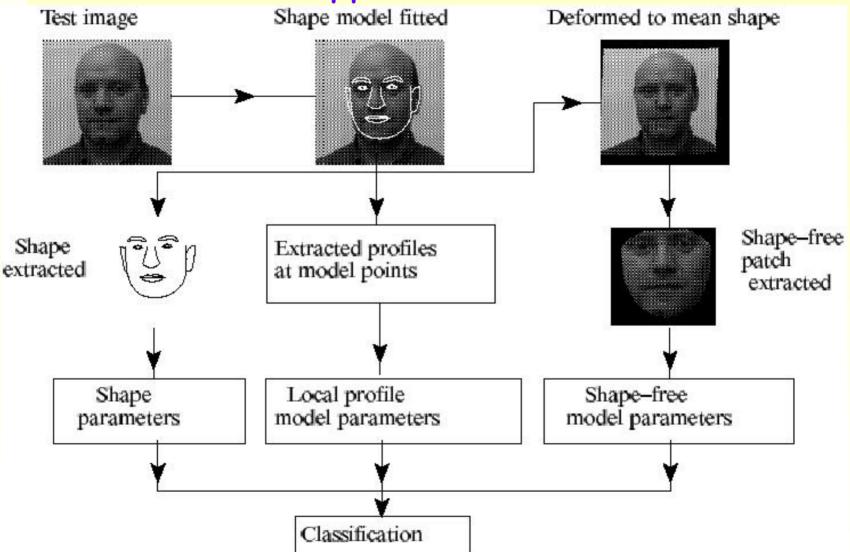
Hybrid Approaches Flexible appearance models

FAM based method (Lanitis, Taylor, and Cootes'95)

- Use of shape-free texture information
 - Applying PCA to normalized texture
- Use of Discriminative Active Shape Model (ASM)
 - Separating shape variations due to inter-class from those due to intra-class
- Use of local profiles perpendicular to shape boundary
 - Enhancing robustness of the system against local changes
- Performance

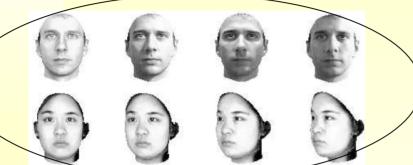
92% for 10 normal images, 48% for 3 difficult images (Each of 30 individuals: training on 10 and testing 13 images)

Hybrid Approaches Flexible appearance models

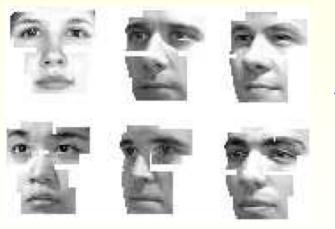


Hybrid Approaches Component-based methods

Component-based face recognition with morphable models (Huang, Heisele, and Blanz'03)



Synthetic training samples from morphable models under different lightings and poses

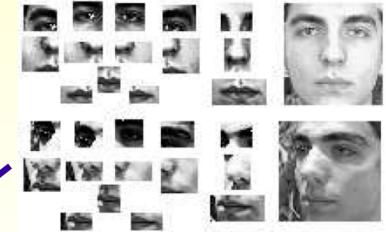


Nine components + whole face for face detection

Wen-Yi Zhao: Face Recognition

Component-based methods require

large number of samples



Fourteen components from face detection

Classifiers are SVM

Performance: 90% hybrid method vs 10% global method based on 6 subjects (3 training, 200 testing)

Still Face Recognition: Facts/Lessons

- 1. Reached a significant level but still far away from the capability of human perception
- 2. Take advantage of domain knowledge
- 3. How big should be the face image size: 128 or 12?
- 4. Accurate feature localizations are critical
- 5. Face recognition is probably not unique compared to other object recognition (psychology ← → engineering)
- 6. Comparing different systems is important but difficult
- 7. Choose appropriate systems based on particular applications
- 8. Building blocks for video-based methods

Still Face Recognition: Open Issues

- 1. Addressing the issue of recognition being too sensitive to inaccurate facial feature localization
- 2. Robustly recognizing faces
 - Small and/or noisy images
 - Images acquired years apart
 - Outdoor acquisition: lighting, pose
- 3. What's the limit on the number of faces that can be distinguished?
- 4. What's the principal and optimal way to arbitrate and combine local features and global features

ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

Video-based Face Recognition

Video Based Face Recognition

1. Challenges of video-based face recognition

2. Basic techniques employed in video-based face recognition

3. Video-based face recognition methods

• 3D recognition will be discussed separately

4. Summary/Discussion

Video Based: Challenges

1. Quality of video is low

- Under non-ideal acquisition condition
- Objects are not co-operative

2. Face images are too small

 Not suitable for many methods, e.g., local feature methods

3. Characteristics of faces

Relatively easy for detection, but hard for recognition

Video Based: Basic Techniques

1. Face Segmentation & Pose Estimation

- Use motion/color to speed up
- Learning for detection and pose estimation

2. Face and Feature Tracking

- Head tracking
- Facial feature tracking
- Complete tracking

3. Face Modeling (important!)

- Shape modeling and texture modeling
- Tracking plus bundle adjustment
- Multi-view 2D modeling, deformable 3D modeling and direct 3D modeling

Video-based Face Recognition

Categorization

- 1. Still-image methods
 - Basic methods
 - Tracking-enhanced (voting schemes, depth for detecting head and/or virtual view synthesis)

2. Multi-modal methods

- Video- and Audio-based
- Face- and Gait-based
- Face- and Iris-based
- 3. Spatio-temporal methods
 - Feature trajectory based
 - Video-Video based

Still Image Methods Tracking plus appearance model

Tracking + appearance model (Edwards, Taylor, and Cootes'98)

- Building an <u>appearance model</u> for each image
- LDA decomposition of the model parameters cinto the identity subspace and residual subspace (light, expression,pose) LDA projection $c = \bar{c} + Dd + Rr$
- Class-specific linear correction A_j to the results of global LDA d_t is the true proj.: $d d_t = A_j(r \bar{r})$
- Performance: enhanced face tracking and visual enhancement are demonstrated, but no recognition results

Varying the most significant identity parameters d

Varying residual parameters without affecting identity

Multi-modal Methods An ATM application

Multi-modal person recognition system

(Choudhury, Clarkson, Jebara, and Pentland'99)

- Three modules:
 - Face recognition (FR) module
 - Speaker identification (SI) module
 - Classifier fusion module
- Characteristics:
 - FR module can detect and compensate for pose variation based on feature tracking
 - Select reliable video and audio clips for recognition
 - Use SfM to detect the presence of actual people as opposed to face images
- Performance: 100% for a small database of 26 people

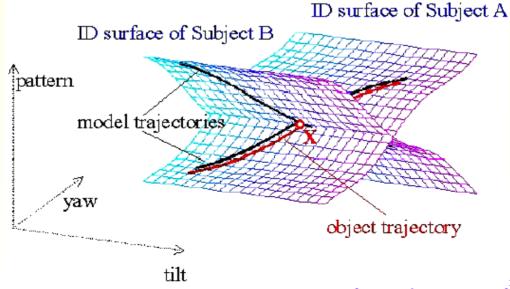
Spatio-temporal Methods Identity surface method

Identity surface method (Li, Gong, and Liddell'01)

• Identity surface

Wen-Yi Zhao: Face Recognition

- Yaw and tilt axes: head pose
- Other axes: discriminating 3D geometry and shape-free-texture features obtained from PCA+KDA
- Matching trajectories (synthesized for known subjects based on estimated poses) in the identity surface
- Performance: 100% for a small database of 12 subjects



Spatio-temporal Methods Video-to-video method

Exemplar-based probabilistic method (Krueger, Zhou, and Chellappa'02)

- Representing gallery video using a online algorithm to learn exemplars as mixture centers (6-20 ones out of 300 frame video)
- Match gallery video against probe video via a condensation method for computing *Posteriors* of identity and affine motion

 $p(i_t|Z_1,\cdots,Z_t) = \int_{\alpha_t} p(\alpha_t,i_t|Z_1,\cdots,Z_t) \equiv p_t(\alpha_t,i_t)$

 Performance: range from 88% to 100% (25 individuals, 4 videos/individual, one gallery, three as probe)

Success: sample frames 1, 9, 40, 72

Failure: sample frames 1, 35, 81, 100

Wen-Yi Zhao: Face Recognition

Video-based Face Recognition: Summary

1. Good news:

- Psychology study suggests motion helps recognition.
- Additional temporal information
 - Select or reconstruct good still frame
 - Multi-view images, recovered 3D information

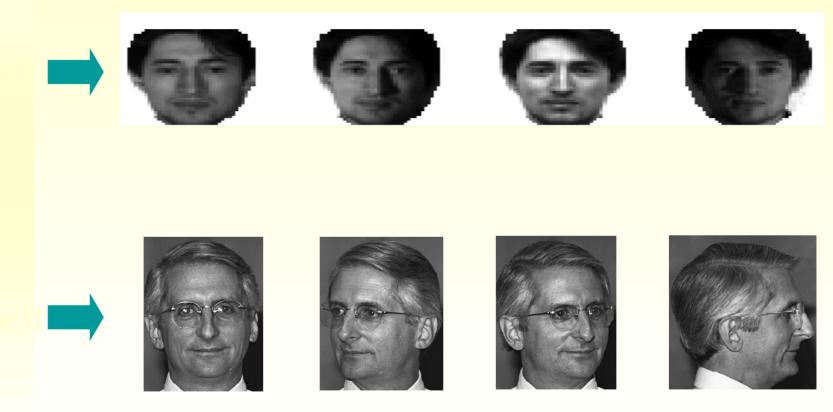
2. Issues:

- Very small testing database (e.g., 20 subjects)
- How to better use joint spatial and temporal information?
- 3D recovery accurate enough for recognition?
- Demand huge space for storing videos

ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

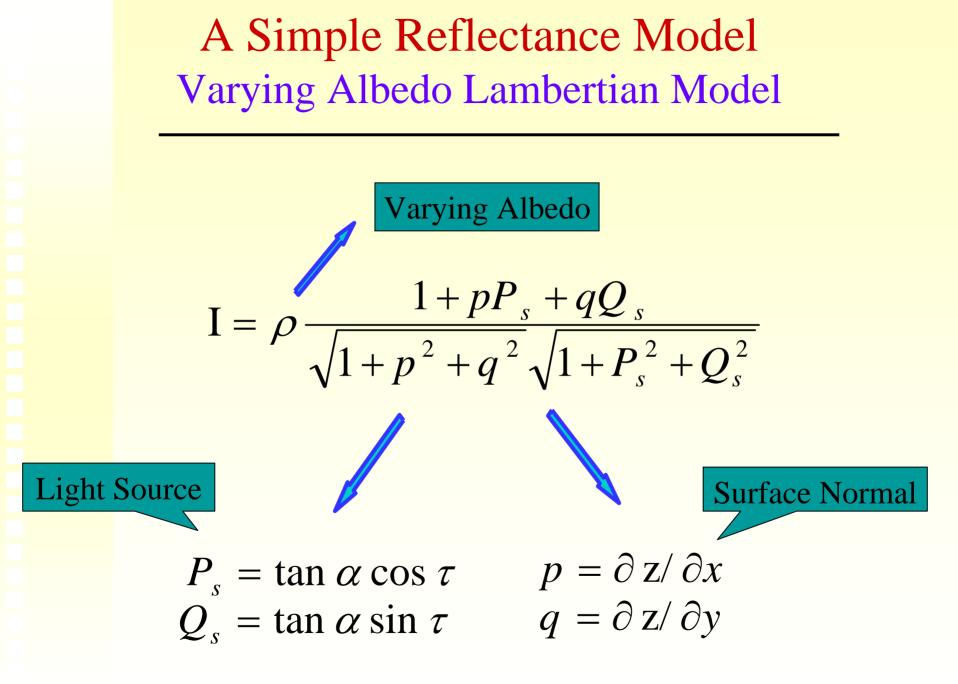
Illumination & Pose Problem

Illumination and Pose Problem



A Simple Reflectance Model View-independent Lambertian Model

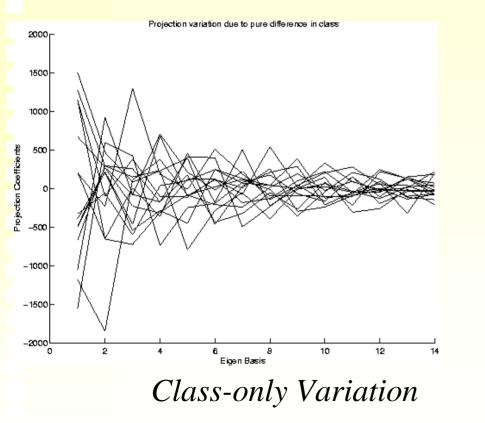
$I[x], y] = \rho[x, y]\mathbf{n}[\mathbf{x}, \mathbf{y}]^T\mathbf{s}$



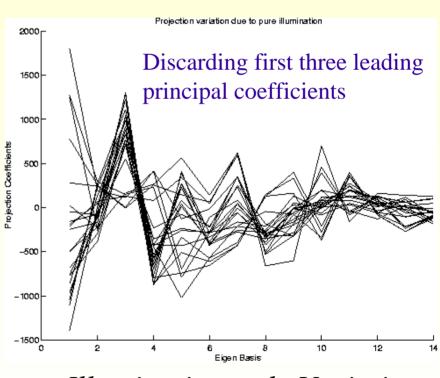
A Simple Reflectance Model How illumination change affect recognition?

 $\begin{array}{l} a_i = I_p \odot \Phi_i - I_A \odot \Phi_i \\ \tilde{a}_i = \tilde{I} \odot \Phi_i - I_A \odot \Phi_i, \end{array} + \text{bilaternal symmetric image (Zhao, 1999)} \end{array}$

$$\tilde{\mathbf{a}} = \left(\frac{1}{K}\mathbf{a}\right) + \frac{Q_s}{K}[f_1^a, f_2^a, \cdots, f_m^a]^T - \frac{K-1}{K}\mathbf{a}_A. \quad \text{where } f_i^a = 2\left(I_p^L[x, y]q^L[x, y]\right) \odot \Phi_i^L[x, y]$$



Wen-Yi Zhao: Face Recognition



Illumination-only Variation

A Simple Reflectance Model Image synthesis: constant vs. arbitrary albedo

Constant Albedo Arbitrary Albedo Arbitrary Albedo & Rotation

Solving Illumination Problem

1. Heuristic approaches

- Disregarding leading principal components
- Use of frontal-face symmetry

2. Image comparison approaches

- Different image representations (edges, filtered, image-ratios)
- Different distance measures
- 3. Class-based approaches
 - Using multiple images per class (at least during training)

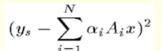
4. Model-based approaches

• Employing 3D face model

Class-based Approaches Quotient Image

Quotient Image (Riklin-Raviv and Shashua'99)

- 3D linear illumination subspace $s = x_1s_1 + x_2s_2 + x_3s_3$
- Basic assumption: same shape but different texture
- Q is the ratio of albedo functions given two objects
- Using Q and a training/bootstrap set to synthesize images of a novel object under various lighting
- New cost function for better result



$$\sum_{i=1}^{N} \left(\alpha_i y_s - A_i x \right)^2$$

Original images

Quotient images

Image synthesis

Wen-Yi Zhao: Face Recognition

Class-based Approaches Albedo-integrated normal map

Illumination Invariant Method

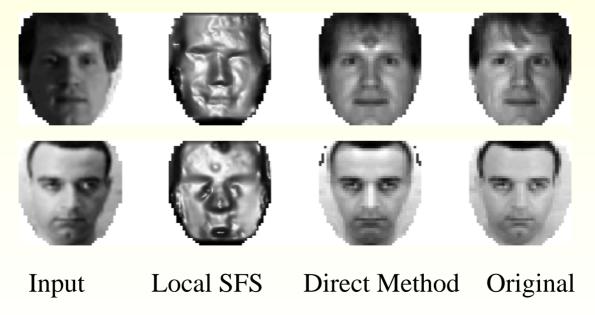
(Sim and Kanade'01, Zhou and Chellappa'03)

- Lambertian assumption $I = \rho \mathbf{n}^T \mathbf{s}$
- Training images under different lightings $\mathbf{b}^T = \rho \mathbf{n}^T \mathbf{S} = \mathbf{r}^T \mathbf{S}$
- Albedo-integrated normal map $\mathbf{r}^T = \mathbf{b}^T \mathbf{S}^+$
- Linear generalization from the training set to the gallery and probe sets via *rank constraints* on the albedo and surface normal

Model-based Approaches Direct 2D-2D method

Direct 2D-2D method (Zhao and Chellappa'00)

- Basic assumption: same & symmetric shape but different texture
- Obtain the prototype (frontal view + normal illumination) image directly from the single input image

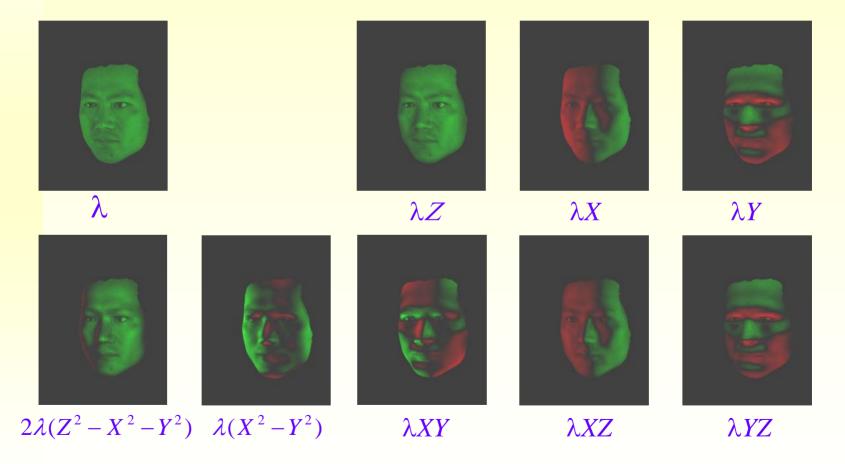


Model-based Approaches Spherical Harmonics Method

Second-order Spherical Harmonics Method (Basri and Jacobs'01)

- The set of all reflectance functions can be approximated using spherical harmonics expansion
- Decompose input image into harmonic images which are illuminated by harmonic light
- The 3D linear illumination subspace methods are just first-order harmonic approximation without the DC components.

Forming Harmonic images $b_{nm}(p) = \lambda r_{nm}(X, Y, Z)$



Wen-Yi Zhao: Face Recognition

Solving Pose (and Illumination) Problem

- 1. Multi-view approaches
 - Multi-view database images of each person
- 2. Hybrid approaches
 - Multi-view images available only during training
- 3. Single image based approaches
 - Invariant feature based methods
 - 3D model based methods

Multi-view Approaches Extending Illumination Cone

Illumination cone (Belhumeur and Kriegman'97)

- Based on 3D linear illumination subspace
- Extending the linear subspace to convex representation to include attached shadow b = max(Bs, 0)

Extending illumination cone for pose/illumination problem (Georghiades, Belhumeur and Kriegman'01)

- Resolve GBR ambiguity to recover 3D Euclidean shape using domain knowledge (symmetry, chin & forehead, height)
- Originally, build a illumination cone for each pose
- Speed up by sub-sampling illumination cone and approximating it with linear subspace

Training images

Base images

Synthesized images under different illumination

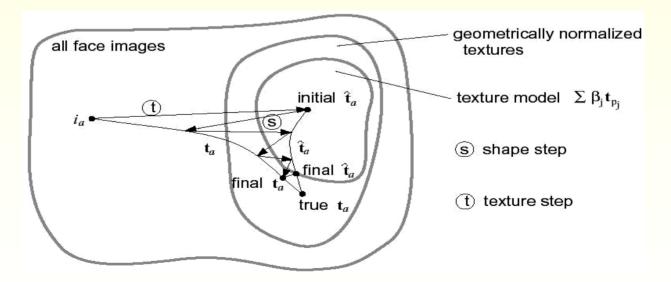
Wen-Yi Zhao: Face Recognition

Synthesized images under different poses

Hybrid/Class Approaches Vectorized Representation of Images

Vectorized representation (similar to AAM) (Beymer'95)

- A vectorized representation at each pose consists of both shape and texture that are mapped into the reference shape
- For a new image, a vectorization procedure is invoked that iterates between shape step and texture step



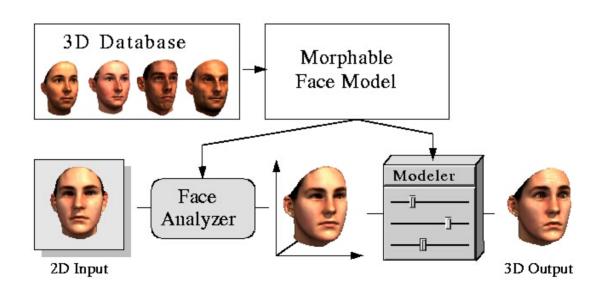


Parallel deformation

Hybrid/Class Approaches Linear 3D Class Methods

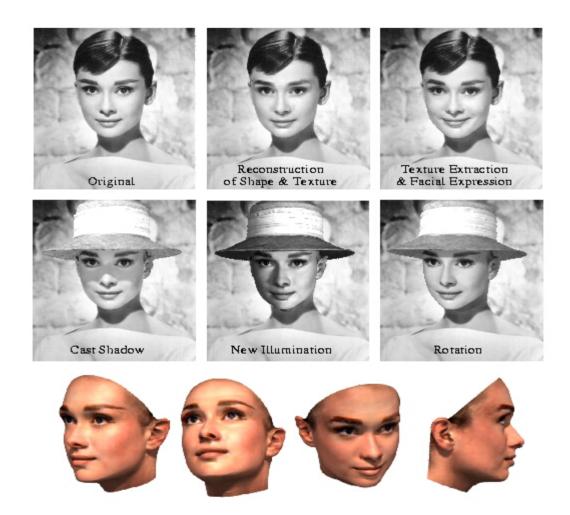
Linear 3D Class Methods (Vetter and Poggio'97, Blanz and Vetter'99)

- Similar to AAM and vectorized representation
- After manual initialization, align a novel 2D image to a morphable 3D model learnt from a set of training samples



Wen-Yi Zhao: Face Recognition

See the second part of this tutorial



Recovered 3D shape and synthesized images

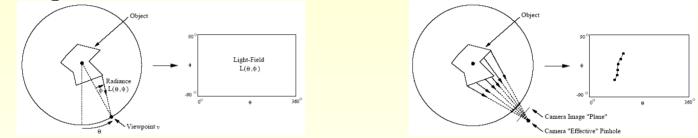
Wen-Yi Zhao: Face Recogi

Hybrid/Class Approaches Eigenfield Methods

Eigenfield Methods (R. Gross, I. Matthews, and S. Baker, 2002)

• Light fields

universal subspace



• Eigen Light-Fields (occlusion issue) $L(\theta, \phi) \approx \sum_{i}^{d} \lambda_{i} E_{i}(\theta, \phi)$

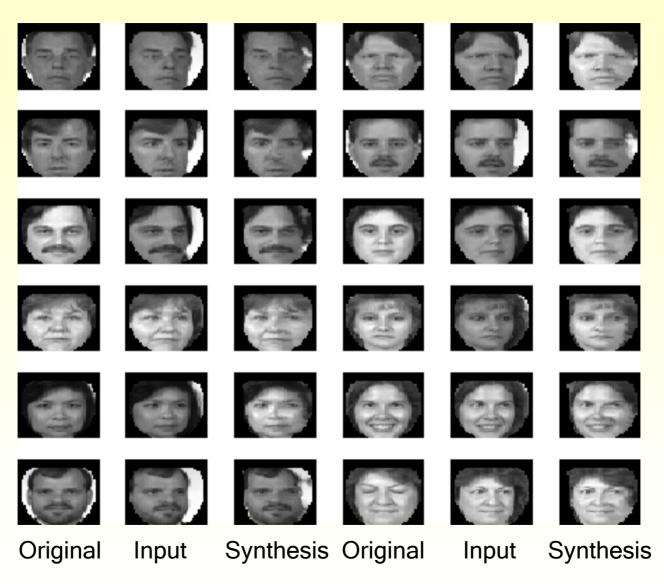
Wen-Yi Zhao: Face Recognition

Single Image Approaches Front-view synthesis

Front-view synthesis (Zhao and Chellappa'99/00)

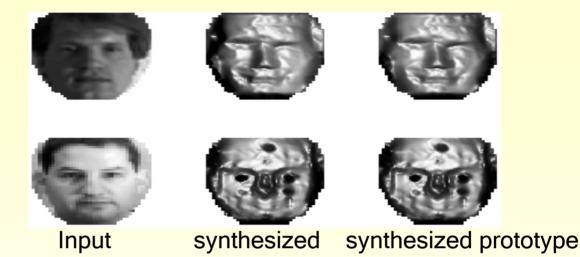
- An interesting question to ask:
 - Considering illumination model, can we directly apply optimal discriminant mapping learnt from frontal images to warped face images?
- How to use 3D information?
 - Recovery of 3D shape: SFS and symmetric SFS Elegant but difficult to obtain accurate 3D shape
 - Or use a generic 3D shape that is deformable More practical solution Has been used in face/head tracking and modeling

Synthesis based on image warping and a generic shape



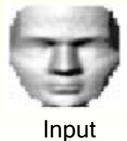
Recovering 3D shape from a single face image

Shape-from-Shading(SFS)



Symmetric SFS (Does not work for arbitrary albedo yet)

Case of constant albedo



synthesized

T

synthesized

(Zhao and Chellappa, 2001)

Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

Case of piece-wise albedo

ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

3D Face Recognition

1. 3D face recognition methods

- Single-modal 3D
- Multi-modal 3D + 2D
- 2. How to obtain 3D structure?
 - Stereo imaging
 - Active projection of structured light
- **3**. How to compare non-ideal 3D structure?
- 4. Still in the early development stage
 - Most reported results are NOT based on large datasets

Why 3D Face Recognition?

- 1. 3D model is invariant to illumination change
- 2. 3D model is invariant to pose change (after alignment)
- 3. Cheap, accurate, and close-to real-time 3D scanner is available
 - Active projection of structured light
 - 2D intensity

3D as range image

3D as shaded model

Survey of 3D Face Recognition

Reference	number of	number of	image	3D face	reported	size	expression				
	persons	images	size	data	performance	variation	variation				
Face Recognition Algorithms Using Only 3D Data											
Cartoux	5	18	2	profile,	100%	yes	no				
1989 [7]	5	10		surface	10070	900					
Lee	6	6	256x150	EGI	none	no	some				
1990 [12]											
Gordon	26 train	26 train	?	feature	100%	yes	no				
1992 [9]	8 test	24 test		vector							
Nagamine	16	160	256x240	multiple	100%	yes	no				
1992 [18]				profiles							
Achermann	24	240	75x150	range	100%	yes	no				
1997 [3]				image							
Tanaka	37	37	256x256	EGI	100%	no	no				
1998 [20]											
Achermann	24	240	75x150	point	100%	yes	no				
1997 [2]				set							
Hesher	37	222	242x347	range	97%	yes	no				
2003 [10]		(6 expr. ea.)		image							
Medioni	100	700	?	surface	98%	yes	no				
2003 [14]		(7 poses ea.)		mesh							
Moreno	60	420 (3 expr.,	avg 2,200	feature	78%	yes	some				
2003 [17]		2 poses)	point mesh	vector							
Lee	35	70	320x320	feature	94% at	yes	no				
2003 [13]				vector	rank 5						

K. Bowyer, K. Chang, and P. Flynn, A Survey Of 3D and Multi-Modal 3D+2D Face Recognition Notre Dame Department of Computer Science and Engineering Technical Report, January 2004.

Wen-Yi Zhao: Face Recognition

Survey of 3D+2D Face Recognition

Multi-modal 3D+2D face recognition is better than 3D only face recognition

Multi-Modal 3D + 2D Face Recognition Algorithms										
Lao	10	360	480x640	surface	91%	yes	no			
2000 [11]				mesh						
Beumier	27 gallery	240 2D	?	multiple	1.4% EER	yes	no			
2001 [4]	29 probes			profiles						
Wang	50	300	128x512	feature	>90%	no	yes			
2002 [22]				vector						
Bronstein	157	?	2250 avg.	range	not	yes	yes			
2003 [6]			vertices	image	reported					
Tsalakanidou	40	80	100x80	range	99% 3D+2D	yes	no			
2003 [21]				image	93% 3D only					
Chang	200 (+ 75	951	480x640	range	99% 3D+2D	yes	no			
2003 [8]	in training)			image	93% 3D only					

K. Bowyer, K. Chang, and P. Flynn, A Survey Of 3D and Multi-Modal 3D+2D Face Recognition Notre Dame Department of Computer Science and Engineering Technical Report, January 2004.

Wen-Yi Zhao: Face Recognition

An Exemplar Procedure for 3D + 2D Face Recognition

Dataset (x 275)

200 galleries, 676 probes, 275 training set 1 - 13 weeks between gallery and probes Methods 1. normalization intensity & pose 2. identification

3. fusion (score-based)

score normalization - decision

K. Bowyer, K. Chang, and P. Flynn, A Survey Of 3D and Multi-Modal 3D+2D Face Recognition Notre Dame Department of Computer Science and Engineering Technical Report, January 2004.

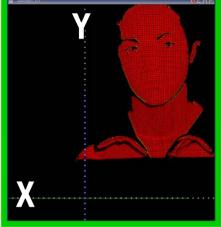
Wen-Yi Zhao: Face Recognition

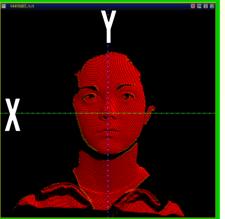
Normalization

 Procedure to minimize the variations in data **Intensity in 2D** •Rotation around Z axis in X-Y plane Histogram equalization Pose in 3D Rotation around X, Y and Z Translation nose tip to the origin

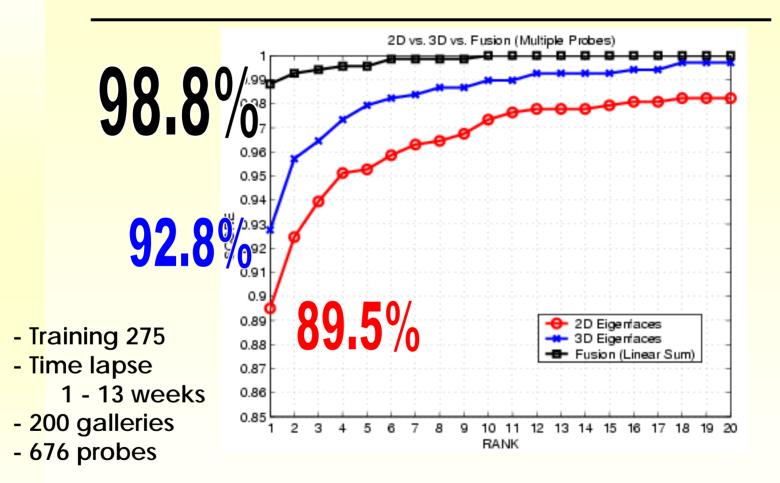
K. Bowyer, K. Chang, and P. Flynn, A Survey Of 3D and Multi-Modal 3D+2D Face Recognition Notre Dame Department of Computer Science and Engineering Technical Report, January 2004.

Wen-Yi Zhao: Face Recognition





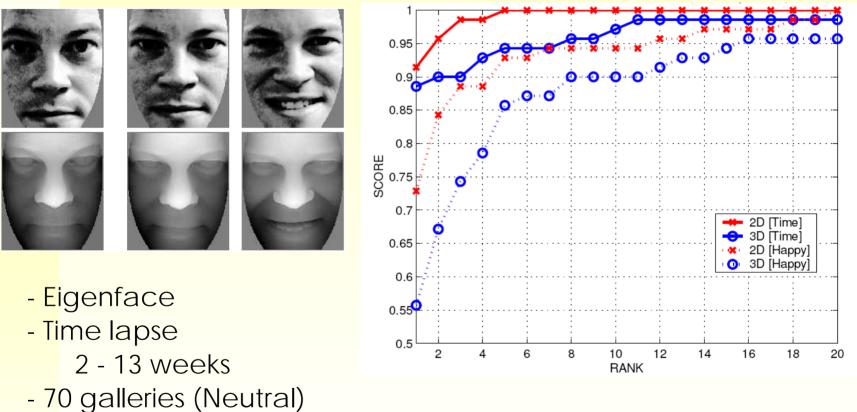
Performance Comparison



K. Bowyer, K. Chang, and P. Flynn, A Survey Of 3D and Multi-Modal 3D+2D Face Recognition Notre Dame Department of Computer Science and Engineering Technical Report, January 2004.

Wen-Yi Zhao: Face Recognition

Issue of 3D Face Recognition



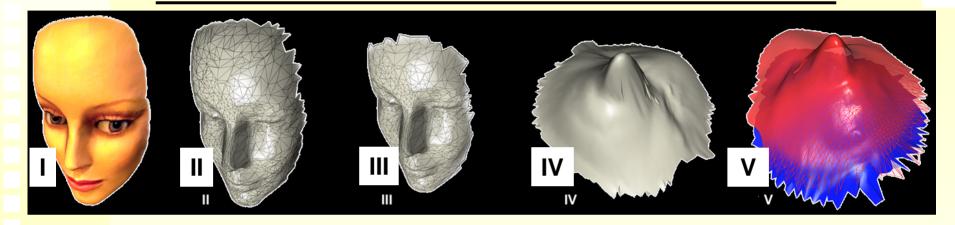
- 70 probes (Smile)

Facial expression is a challenge!

K. Bowyer, K. Chang, and P. Flynn, A Survey Of 3D and Multi-Modal 3D+2D Face Recognition Notre Dame Department of Computer Science and Engineering Technical Report, January 2004.

Wen-Yi Zhao: Face Recognition

Expression-Invariant 3D Face Recognition



Range camera acquires facial surface (I).

- The surface is smoothed (II), subsampled and cropped (III).
- Fast marching computes geodesic distances on the surface.
- Facial surface is flattened via MDS (multi-dimensional scaling) (IV).
- Rigid surface matching using the canonical surfaces (V).

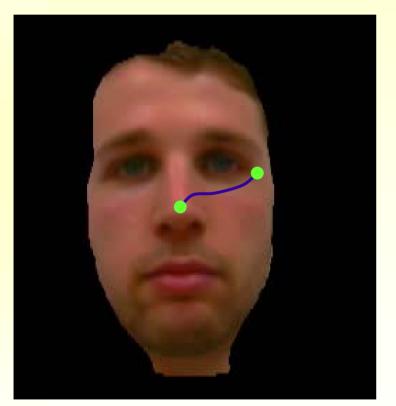
A. Bronstein, M. Bronstein, E. Gordon. And R. Kimmel, Expression-Invariant 3D Face Recognition, Audio and Video based Person Authentication (AVBPA), 2003.

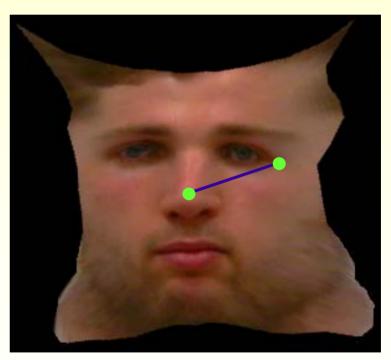
R. Kimmel and J.A Sethian, "Computing geodesic on manifolds". Proc. of National Academy of Science 95, pp. 8431-8435, 1998.

Wen-Yi Zhao: Face Recognition

Texture Flattening via MDS

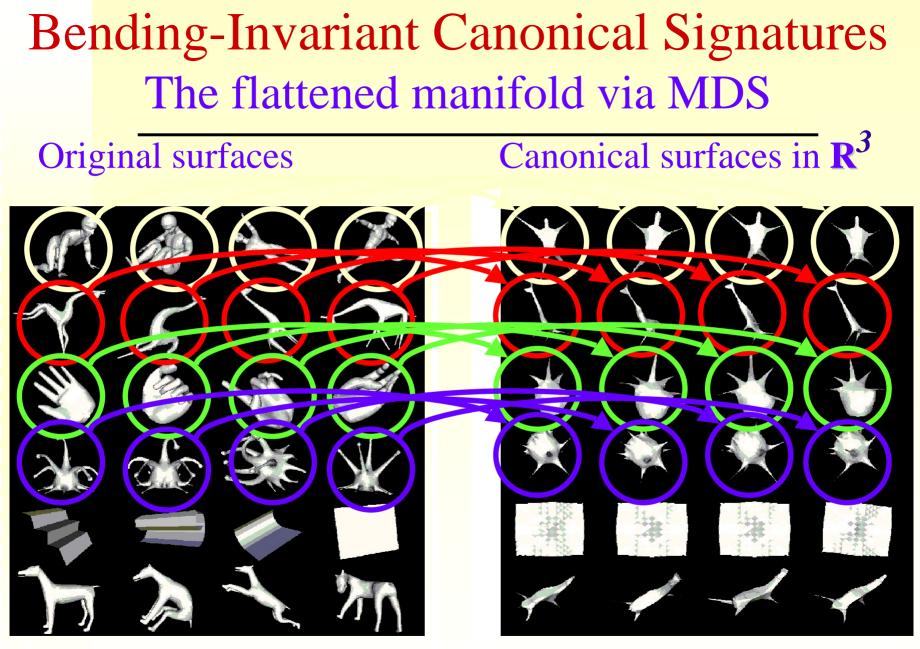
Flatten curved surfaces so that the geodesic distances between two points are well approximated by Euclidean distances in the embedding surface





G. Zigelman, R. Kimmel, and N. Kiryati, "Texture Mmapping using surface flattening via multi-dimensional scaling, IEEE Trans. Visualization and Comp. Gracphics, 8. pp. 198-207, 2002.

Wen-Yi Zhao: Face Recognition

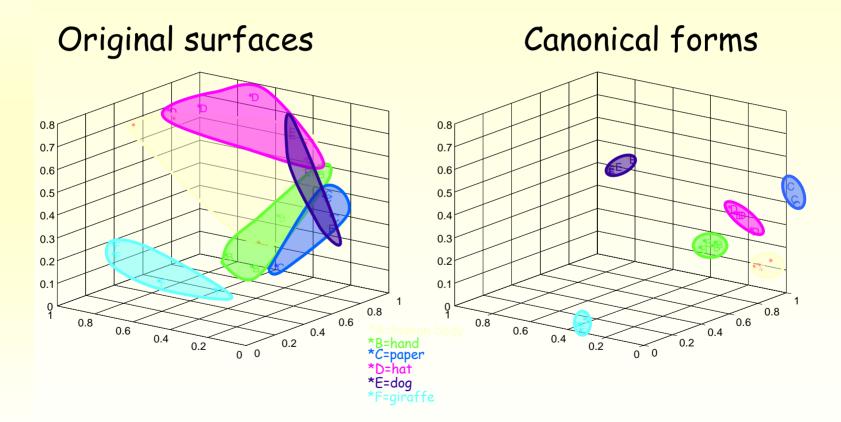


Elad and Kimmel, CVPR'2001/PAMI'2003

Wen-Yi Zhao: Face Recognition

Clustering of Canonical Signatures

2nd moments based MDS for clustering



Elad and Kimmel, CVPR'2001/PAMI'2003

Wen-Yi Zhao: Face Recognition

Twins Test I: 3D surfaces

Recognizing twins, a challenging test for face recognition.

Reference Match 3 Match 1 Match 2 Michael 40 Alice 107 Michael 46 bob125 0.3675 0.3299 0.3537

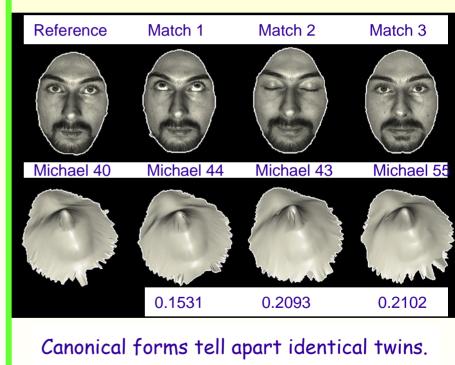
Facial surfaces as rigid objects -> inaccurate.

CANONICAL FORM MATCHING Reference Match 1 Match 2 Match 3 Michael 40 Michael 44 Michael 43 Michael 55 0.1531 0.2093 0.2102 Canonical forms tell apart identical twins.

A. Bronstein, M. Bronstein, E. Gordon. And R. Kimmel, Expression-Invariant 3D Face Recognition, Audio and Video based Person Authentication (AVBPA), 2003.

AWBno Kis Chard M Forcer Steen guild and Kimmel, "3D face recognition using geometric invariants Europenine Conference on Computer Vision, May 2004: T4 Tutorial

SURFACE MATCHING



Twins Test II: Eigenforms (2D+3D) Match 1 Match 2 Match 3 Match 1 Match 2 Match 3 genfaces E Reference Reference Alex 10 Alex 13 Alex 1 Robert 90 Alex 19 Alex 31 0.0602 0.0774 0.0927 0.0521 0.0917 0.0972 Michael 9 Alex 20 Michael 61 Michael 43 Michael 40 Alex 4 Alex 6 Michael 9 **Eigenforms** 0.0537 0.0897 0.1102 0.1228 0.1229 0.1290

A. Bronstein, M. Bronstein, E. Gordon. And R. Kimmel, Expression-Invariant 3D Face Recognition, Audio and Video based Person Authentication (AVBPA), 2003.

AWBno Kir Zhugov Foron Breing mitlan. Kimmel, "3D face recognition using geometric invariants Europeante Conference on Computer Vision, May 2004: T4 Tutorial

ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

Performance Evaluation

Performance Evaluation

1. FERET 93-97→ FRVT 2000 → FRVT 2002 http://www.frvt.org

2. M2VTS → XM2VTS → BANCA http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb http://banca.ee.surrey.ac.uk.

3. Colorade State University Web Site http://www.cs.colostate.edu/evalfacerec/

FACE RECOGNITION VENDOR TEST 2002

Dr. Jonathon Phillips DARPA & NIST

September, 2003

http://www.frvt.org

Authors: Jonathon Phillips, Patrick Grother, Ross Micheals, Duane M. Blackburn, Elham Tabassi, and Mike Bone.

Background

United States Patriot Act:

"...develop and certify a technology standard...that can be used to verify the identity of persons applying for a US VISA..."

- Motivation:
 - Entry/exit United States
 - Airport Security
- Goals:
 - Assess performance on large real-world data sets
 - Identify new promising approaches
 - Measure progress on difficult face recognition problems
 - Pose variation
 - Images taken months/years apart
 - Video sequences

FRVT 2002 - History

FERET 1993-95

- Tech Agent: J. Phillips
- Face Recognition
- Established Face Database
- Established Standardized Evaluation Methodologies
- Basis of all Face Recognition Technology on HumanID

- Assessed improvements since FERET
- Evaluated commercial stateof-the-art

FRa

VT S

FACE RECOGNITION VENDOR TEST 2002

- Assessed improvements since FRVT 2000
- Large scale, operational database
- Difficult problems

FRVT 2002

- Independent evaluation of face recognition systems
- Administered July and August 2003
- Sequestered data
- Open to:
 - Mature proto-types
 - Commercial Systems
- From:
 - Academia
 - Research Labs
 - Industry

Test Design

Two tests:

- High Computational Intensity Test
 - Measure performance on very large data sets
 - U.S. Dept of State Mexican non-immigrant visa
 - 121,589 still images
 - 37,437 individuals
- Medium Computational Intensity Test
 - 7,500 images
 - Pose variations
 - Months/years between images
 - Illumination

High Computational Intensity Test

Example Photos

Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

Medium Computational Intensity Test Indoor and Outdoor Images

Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

FR a VT 2

Medium Computational Intensity Test 3D Morphable Models

Wen-Yi Zhao: Face Recognition

European Conference on Computer Vision, May 2004: T4 Tutorial

Conclusions

- Indoor performance has improved since FRVT 2000.
- Performance decreases approximately linearly with elapsed time.
- Better systems are not sensitive to indoor lighting changes.
- Three-dimensional morphable models improve performance.
- Males are easier to recognize than females.
- Older people are easier to recognize than younger people.
- Outdoor face recognition performance needs improvement.

http://www.frvt.org

ECCV 2004 T4 Tutorial Face Recognition and Modeling-Part I

<u>Challenges and</u> <u>Directions</u>

Technical Challenges: System Performance

IEEE Computer Society Magazine <u>Cover Feature</u> "An Introduction to Evaluating Biometric Systems"

"On the basis of media hype alone, you might conclude that biometric passwords will soon replace their alphanumeric counterparts with versions that cannot be stolen, forgot-ten, lost, or given to another person. But what if the performance estimates of these systems are far more impressive than their actual performance?"

Three major testing protocols:

- FERET (http://www.itl.nist.gov/iad/humanid/feret/)
- XM2VTS (http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/)
- FRVT (http://www.frvt.org)

Technical Challenges: System Requirement

➢ In many applications, devices are very small and needs very low power.

 \succ Many of the existing algorithms are complex enough and still need to be refined to improve the performance.

"A PDA-based Face Recognition System" at WACV 2002 by Jie Yang, Xilin Chen, William Kunz School of Computer Science, Carnegie Mellon University

Technical Challenges: Algorithms

There exists an important question

- Theoretically, how unique and invariant faces could be?
- Practically, how many people can be distinguished?

• The current focus is on how to recognize face under

- Varying illumination (outdoor)
- Varying pose (naturally)
- Aging (missing children)
- Cosmetic/makeup (?)
- Degenerated quality (surveillance video)
- Compressed images (to some extend)

Industry Challenges: Killer Applications

Challenges of finding killer-applications

- The technology is hardly perfect, especially compared with human beings. But under limited conditions it is quite successful.
 For example, verification is quite good under indoor, controlled environment. It can be integrated into Biometrics systems.
- Video game, Virtual reality.
- Cameras embedded in cell phone/palm pilot/watch: intelligent processing including face recognition.
- Surveillance/monitoring cameras

Conclusion and Directions

- Machine perception of faces has numerous applications.
- The choice of an appropriate method should be based on the specific requirement (e.g., image size) of a given task.
- Video-based face recognition is rapidly evolving while
 3D face recognition is still in its early development stage.
- Face recognition plays an important role in biometrics.
- Comparison to human perceptual system:
 - Machine recognition of faces has reached a certain level of maturity, especially in terms of the gallery size. Meanwhile human perceptual system has limitations on the number and types of faces that can be easily distinguished.
 - Machine systems are still far away from the capability of human perceptual system, especially under realistic outdoor-like environment.

Resources

Main reference

Face Recognition: A Literature Survey W. Zhao, R. Chellappa, J. Phillips, and A. Rosenfeld ACM Computing Survey Vol. 35, Dec. 2003/ University of Maryland Tech. Rep. CS-TR-4167R 2002/ http.www.cfar.umd.edu

Baseline Code

Colorado State University Evaluation Web site www.cs.colostate.edu/evalfacerec

Relevant Conferences

- AFGR 1995-2002 (Automatic Face And Gesture Recognition)
- AVBPA 1997-2003 (Audio- and Video-Based Person Authenti.)
- AMFG 2003 (Analysis and Modeling of Faces and Gestures)
- ICIP/ICPR/ICME/CVPR/ICCV/WACV
- Biometric Consortium Conference (government and industry)

Internet Resources

Face Recognition Home Page

http.www.cs.rug.nl/~peterkr/FACE/frhp.html

Face Databases

• UT Dallas www.utdallas.edu/dept/bbs/FACULTY_PAGES/otoole/database.htm

 Notre Dame database www.nd.edu/~cvrl/HID-data.html MIT database ftp://whitechapel.media.mit.edu/pub/images • Edelman ftp://ftp.wisdom.weizmann.ac.il/pub/FaceBase CMU PIE www.ri.cmu.edu/projects/project\ 418.htm Stirling database pics.psych.stir.ac.uk M2VTS multimodal www.tele.ucl.ac.be/M2VTS cvc.yale.edu/projects/yalefaces/yalefaces.htm Yale database Yale databaseB cvc.yale.edu/projects/yalefacesB/yalefacesB.htm Harvard database hrl.harvard.edu/pub/faces Weizmann database www.wisdom.weizmann.ac.il/~yael images.ee.umist.ac.uk/danny/database.html • UMIST database • Purdue rvl1.ecn.purdue.edu/~aleix/aleix\ face\ DB.html www.cam-orl.co.uk/facedatabase.html Olivetti database Oulu physics-based www.ee.oulu.fi/research/imag/color/pbfd.html